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Abstract

Macroeconomic research often relies on structural vector autoregressions,
(S)VARs, to uncover empirical regularities. Critics argue the method goes awry
due to lag truncation: short lag lengths imply a poor approximation to impor-
tant data-generating processes (e.g. DSGE models). Empirically, short lag length
is deemed necessary as increased parametrization induces excessive uncertainty.
The paper shows that this argument is incomplete. Longer lag length simulta-
neously reduces misspecification, which in turn reduces variance. Contrary to
conventional wisdom, the trivial solution to the critique actually works. For data
generated by frontier DSGE models long-lag VARs are feasible, reduce bias and
variance, and have better mean-squared error. Long-lag VARs are also viable
in common macroeconomic data and significantly change structural conclusions
about the impact of technology and monetary policy shocks on the economy.
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1 Introduction

Structural Vector Autoregressions ((S)VARs) have proven to be an important tool for mea-
suring macroeconomic regularities. Following Sims’ (1980) seminal contribution Bernanke
(1983), Blanchard and Quah (1989), Sims (1989, 1992), Eichenbaum and Evans (1995), Gali
(1999), Fisher (2006), Beaudry and Portier (2006) and many others since have provided
VAR-based evidence for a variety of shocks and their macroeconomic effects.

Yet the VAR method is not without its critics. Many critiques of VARs boil down to the
problem of lag truncation. Empirical macroeconomists invariably use a very small number
of lags, typically at most up to four quarters or twelve months. But short-lag VARs are
potentially problematic. DSGE models tend to imply reduced form VAR representations
with long lag length (often infinity). Because lags are truncated, impulse response functions
(IRFs) computed using VARs may not correspond to those of the underlying data-generating
process. Chari, Kehoe and McGrattan (2008, henceforth CKM) is perhaps the most well-
known elicitation of that critique.! Moreover, a recent series of papers (Li et al. (2024a),
Montiel Olea et al. (2025)) rather strongly dismisses the use of VARs and advocates the use
of Local Projections (LP) instead. In that work, almost every argument against VARs rests
on lags being truncated.

The trivial solution to lag truncation, i.e., dramatically increasing the lag length, is
unexplored. What keeps macroeconomists from using long lag lengths is the intuition that

uncertainty becomes pervasive. That is, increasing the lag length increases the number of

!Others include Braun and Mittnik (1993), Faust and Leeper (1997), Cooley and Dwyer (1998) and

Ravenna (2007).



parameters rapidly, thereby reducing the degrees of freedom and making confidence interval
width prohibitively large.

We show that this standard intuition is only part of the story. In the face of misspecifi-
cation due to lag truncation, increasing the lag length can actually reduce uncertainty. The
reason is that as truncation reduces, misspecification reduces. The reduction in misspecifi-
cation not only leads to the well-known bias reduction, but it also reduces variance. This
reduction in variance works against the imprecision resulting from increased parametriza-
tion. This trade-off is general: it applies to all truncated VARs, no matter whether they are
identified with short-run, long-run or other restrictions.

When increasing the lag length in standard VARs on realistically sized samples of data
generated by standard DSGE models, the variance-effect of misspecification reduction often
dominates the increased imprecision due to increased parametrization. The result is then
much more in favor of long-lag VARs: reduced truncation bias, more precise inference,
reduced MSE, better coverage rates.

We then document that various well-known empirical short-lag VAR studies allow much
longer lag representations, without uncertainty becoming prohibitively large. Importantly,
increasing the lag length significantly alters their structural economic conclusions.

Our first application considers the short term effect of technology shocks on hours worked.
Gali (1999) shows hours drop significantly for the US economy as a whole, a finding that
he interprets as supportive of New Keynesian (and starkly opposite to Real Business Cycle)
models. Chang and Hong (2004) take issue with that finding and show that for the majority
of US industries the impact is positive, thus feeding the disagreement between the two views.

The above evidence is all based on short-lag VARs. Our analysis reconciles the two views: for
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long-lag VARs the aggregate evidence includes a zero response, while the sectoral evidence
shows equal support for positive and negative responses. Long-lag VARs thus imply that
the support for either view is less strong.

Our second application focuses on the effect of monetary policy shocks on the economy.
Miranda-Agrippino and Ricco (2021) construct one of the cleanest measures of monetary
policy shocks to date. Using their instrument in a short-lag VAR they find the effects of
monetary policy on the economy are both substantial and long lasting. We show that these
conclusions are not robust to lag truncation. As soon as one allows for the possibility that
the lag length is two years or more, there is essentially no evidence that monetary policy
has any significant effect on production, unemployment or prices at horizons beyond one
year. While the real and nominal effects within the first year are still significant, they are
substantially smaller: a 100bp. increase in the 1-year interest rate leads to fall in industrial
production of -0.70% in long-lag VARs, compared to -1.36% in short-lag VARs.

Our work has several implications, both methodological and practical. First, the litera-
ture that compares the performance of VARs and local projections (LP) does not consider
VARs with long lags a viable approach. While long-lag VARs have excellent theoretical
properties (e.g. Plagborg-Mgller and Wolf (2021)), they are deemed unworkable in practice
due to high variance (e.g. Li et al. (2024a, 2024b)). We explain why the intuition underlying
that dismissal is incomplete and establish that long-lag VARs are in fact empirically feasible.

Second, Ludwig (2024) derives the exact finite-sample mathematical mapping between
VARs and LPs: LPs are a combination of VARs of increasing lag length. Consequently,
appreciating the bias and variance of LPs requires understanding the bias and variance of
VARs, also at long lag lengths, which our central result sheds light on. Ludwig’s central
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theorem implies comparing LP and VAR for given lag lengths is misleading because they
really cast a large model against a small one. Conditional on model size, there really is
no bias-variance tradeoff between LPs and VARs. Our results add to that by showing that
increasing the lag length in VARs reduces both bias and variance. In other words, for VARs
increasing model size by adding lags may come with benefits on all sides. And by Ludwig’s
(2024) theorem, which shows how LPs are a combination of VARs of different lag lengths,
LPs could benefit from that too, provided they use long lags.

Third, our results imply that a VAR with lag length p, VAR(p), should not be used
for structural inference at horizons h larger than p. The reason is that inference is largely
uninformative at that point: a VAR(p) cannot propagate much beyond horizon p, which
implies that lag truncation leads to uncertainty being mechanically underestimated at those
longer horizons. Coupled with potentially significant truncation bias, the short-lag VAR
researcher runs the risk of becoming relatively certain about the wrong point estimate.
Hence, if the research question centers on long horizon effects the VAR better include lags
that extend that far. This helps appreciate the reasons behind the results of Baumeister
(2025), who shows that the significant long term real effects of monetary policy found in
Jorda et al. (2025) are likely an artefact of lag truncation.

Fourth, all VAR researchers should be concerned about lag truncation, regardless of the
horizon of interest dictated by the research question. Truncation affects inference at all
horizons, including the very short ones (h < p). Our simulations and applications reinforce
that fact. This too sheds light on the performance of LPs. LPs in practice always consider
short lag lengths. LP researchers in fact often rely on VAR lag selection criteria to pick LP
lag length (see e.g. the discussion in Baumeister (2025)). By Ludwig’s (2024) theorem LPs
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are therefore constructed from short-lag VARs. But because short-lag VARs are biased due
to truncation, LPs necessarily inherit that bias. Long-lag VARs, in contrast, hedge against
truncation bias at all horizons of interest.

The overarching implication of our investigation is that, contrary to conventional wisdom,
long-lag VARs are feasible in practice. Applied research should use them broadly because
they safeguard against the significant problem that lag truncation implies for structural
economic conclusions. Information criteria focused purely on forecasting are poor guides for
accurate structural inference. Forecasting is an out-of-sample exercise that benefits from
parsimony (i.e. limited complexity). But structural inference, e.g. IRFs or conditional
forecasting, is an in-sample exercise which benefits from added complexity or less parsimony.
This trade-off between under vs. overfitting is a well-known fact in statistics/econometrics
(e.g. Chatfield (1995)) and also central to model selection questions in e.g. machine learning.
While long lags may not be relevant for all data and questions, it is up to the researcher
to show that her structural results are robust to significant increases in the lag length, far
beyond the lag lengths typically considered in current practice.

The paper is organized as follows. We start by laying out a standard single-equation
omitted variables argument. This provides the intuition for the effect of reducing truncation
in VAR impulse responses, where analytics are not tractable. We then assess long-lag VARs
on the basis of a series of Monte Carlo experiments. We generate data from a variety of
DSGE models, estimate VARs of different (and possibly very long) lag length and evaluate
their performance. We then turn to the data and re-evaluate some well-known VAR results
on the effect of technology and monetary policy shocks. Finally, we provide practical advice

for the researcher that wishes to hedge against the negative effects of truncation.
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2 Misspecification

We first briefly re-state a textbook omitted variables argument, which facilitates understand-

ing the intuition behind the general VAR results.

2.1 Some useful single-equation intuition

Consider a data-generating process
yr = X1B1 + XotfBo + €, V() =02 (1)

where a variable y is determined by two (sets of) exogenous variables, X; and X5 and a

shock e. Now run the regression
ye = Xuby + e, V() = % (2)

It is well-known that omission of the relevant variable X5 leads to biased point estimates

(unless X; L Xy):

E(by) # b1

as well as an upwardly biased variance estimate (always):

2.2 Omitted variables and truncation in VARs

The single-equation textbook result straightforwardly generalizes to VARs. It suffices to
think of y as a vector of variables, X as the lags the researcher includes, and X, as the lags

not included, or truncated.



It is then immediate that a VAR, denoted by

Y, =BYia+..+BY,, +u, Eluwu,) =3

B(L) = BiL + ... + B, L?,

which has p < p* (where p* denotes the true lag length) will suffer from truncation bias.
The omitted variables argument above highlights why: lag truncation (or omitting relevant
variables) results in a bias in the reduced form coefficients B(L) and in the reduced form
covariance matrix . Any VAR analysis has impulse responses as a function of both these
reduced form objects; let

IRF = f(B(L),%). (3)

Because impulse responses are a function of both B(L) and ¥ they will tend to become less
biased if both arguments become less biased. In other words, reducing truncation reduces
bias.?

But what do we know about variance? Recall that the intuition that keeps macroeco-
nomics from considering long lag lengths is that the increased parametrization (dimension
of B(L)) leads to increased imprecision.

Though conceptually simple, equation (3) helps formalize that standard intuition. Es-

sentially, recalling that V' (.) denotes variance, the intuition simply states that V(B(L)) 1=

2We merely refer to a documented tendency in DSGE models analyzed in the literature (see, for instance,
CKM). From a theoretical perspective, this reduction in bias is not a certitude. Generally, bias reduction
in its arguments does not guarantee bias reduction in the impulse response function. See Sims (1972) for
an elicitation of a related point in terms of reduced form objects: convergence in individual point estimates

(i.e. function arguments) may imply divergence of the sum of coeflicients (i.e. the function itself).



V(IRF) 7T as the lag length increases. But (3) also makes clear that this argument is incom-
plete. In particular, it neglects that there is a second argument, .. Therefore, any claims
about V(I RF) solely based on V(B(L)) are only partial. Importantly, the omitted variables
argument suggests a reduction in bias of the estimate of 3, which may well contribute to a
reduction in variance of impulse responses.

Equation (3) also makes clear why general statements about V(I RF') are hard to make:
the non-linearity of f (also across horizons) interacts with the multi-dimensionality of both
its arguments, B(L) and ¥.. Therefore, we ascertain the balance of this trade-off by means of

a series of Monte Carlo experiments based on frequently studied models in macroeconomics.

3 Monte Carlo evidence

For each DSGE model considered, we generate data of length equal to that available in
typical macro data samples (7' = 200 quarters).? Given one such sample of data, we estimate
VARs of different lag lengths, calculate impulse response functions and construct confidence
bands.* We repeat that exercise 1000 times for each model and subsequently investigate

bias, confidence interval (CI) width, mean-squared error and coverage rates.

3When comparing VARs of different lag-length, we ensure each VAR has the same number of effective
observations, equal to T'= 170. That is, lag initialization does not affect sample size. That said, our results

do not hinge on this implementation detail.

4See Christiano et al. (2007) for a discussion of why this is the appropriate way to evaluate SVARSs.
Essentially, one takes an econometrician’s perspective - who has only one draw of data and faces a question

of inference on the basis of just that data.



3.1 Setup

We consider a range of models, both real and nominal, and identified with both short and
long-run restrictions. More precisely, we consider estimating IRFs using long-run restric-
tions on data generated from CKM’s RBC model as well as the short-run restriction version
in Christiano et al. (2007), henceforth CEV, of that same model (in which agents do not
observe the productivity shock at the time of making the labor decision). We consider both
these models because they have taken center stage in much of the debate on the use of VARs.
In addition, we also consider the Smets and Wouters (2007) model, henceforth SW, because
it nests many shocks and frictions frequently discussed in macro and arguably captures dy-
namics deemed important in the data. As a simple way of building in a short-run restriction
in that model, we assume that monetary policy responds only to lagged macroeconomic ag-
gregates. The identifying restriction is then that only the monetary policy shock affects the
interest rate contemporaneously. Because each of these models is well-known, we refer the
reader to the respective papers for a precise description of model equations and parameter
calibration /estimation.’

We work under a number of maintained simplifications. First, the identification assump-
tions are invariably correct (i.e., the long or short-run restrictions hold true in the data
generating process (DGP)). Second, invertibility is never a problem; all the models we con-

sider are fundamental (e.g. Fernandez-Villaverde et al. (2007)). Third, all our experiments

’For CKM and CEV, we follow the CKM baseline calibration. For SW we modify the policy rule to

re = pri—1+ (1 —p) {7’77771:—1 +ry (yt—l - yf—l)} te

and calibrate the model at the median of SW’s posterior distribution.
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are based on two-shock models and two-variable VARs. Both RBC models fit that framework
by construction, but the SW model does not. For the latter, we consider the model with
only monetary policy and preference shocks. For the CKM and CEV model we run a VAR
on labor productivity growth and hours in log-levels. The moment of interest is the response
of hours to a productivity shock. For SW we run a VAR on GDP-growth and the interest
rate, and the moment of interest is the IRF of GDP to a monetary policy shock. Finally,
uncertainty bands are computed as in Sims and Zha (1999), Canova (2007) and Uhlig (2005).
In particular, given a weak conjugate prior centered around their OLS estimates VARs have
a posterior distribution of the Normal-Inverse Wishart form. Sims and Zha (1999) show that

these provide good approximations to frequentist bootstrapped intervals.5

3.2 Results

Figure 1 contains, for each model, the median bias across all replications for VARs of different
lag length. The figure resembles those found in the literature and shows how short lag length
can imply substantial bias. Particularly, the short-lag VAR (p = 4) frequently exhibits the
maximum bias at multiple horizons for the different models considered. Long lag length, or
reduced truncation, can induce substantial bias reduction, most notably in CKM and, from

intermediate horizons onward, in CEV and SW.” To evaluate if such biases are of concern,

6Qur results also go through for bootstrapped confidence bands. Note furthermore that the priors we
use do not put different weight on short vs. long lags, as one would in e.g. a Minnesota prior. We discuss

alternative priors and inference procedures in Section 5.2.

"Note that the bias in CKM reduces fairly monotonically over horizons and lag length, but it does not
in CEV and SW. This happens because in the latter transmission is more complicated, both in terms of

dynamics (e.g. humps) and more endogenous model variables. Our investigation purely focuses on the effect
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we now turn to measures of uncertainty.

Figure 1: Median bias in IRF across 1000 synthetic data sets from three DSGE models
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Note: Bias calculated as IRF(VAR(p)) — IRF(DSGE). Horizontal axis is horizon in quarters. The IRF
under investigation is the response of hours to a technology shock in CKM and CEV, and the response of

GDP to a monetary policy shock for SW.

of lag length and its impact on bias and variance. The VARs could further benefit in terms of bias reduction
from including omitted endogenous variables to fully capture the more complex transmission. See Braun

and Mittnik (1993) for a discussion of how omitting relevant endogenous variables affects bias.
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Result 1: Uncertainty does not explode with the lag length p Figure 2 plots
a standard measure of uncertainty about IRF: the median width of the confidence bands.®
A first glance at that figure reveals that, contrary to common wisdom, CI width does not
explode as the lag length p increases. Instead, even for VARs with very long lags uncertainty
bands are roughly in the same ballpark as those of short-lag VARs.

For longer horizons, short-lag VARs trivially attain minimum CI width. The reason is
that a VAR(p) cannot propagate much beyond horizon p. As a result, uncertainty cannot
propagate much beyond that horizon either. The consequence is, as apparent from Figure

2, that CI width mechanically converges to zero soon after horizon p.

Result 2: Short-lag VARs have maximal uncertainty for horizons where un-
certainty is not mechanically low For short horizons short-lag VARs have maximal
CI width. This holds true for each of the models considered. A possible reason for that to
occur is that misspecification error is maximal for short-lag VARs. Individual reduced form
coefficients may be estimated more precisely for a given draw, but across draws short-lag
VARs have increased variance due to the misspecification of the VAR. Long-lag VARs, by
contrast, may have individually imprecise reduced form coefficients, but they suffer much

less from misspecification.

Result 3: Long-lag VARs have comparable coverage and comparable or better
MSE than short-lag VARs Combined with a tendency to produce smaller biases, long-

lag VARs have favorable properties compared to more standard short-lag VARs. Figure 3

8That is, for each generated sample we subtract the 5th percentile from the 95th, and then take the

median across all draws. Results are similar for 68% credible intervals.
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Figure 2: Median CI width across 1000 synthetic data sets from three DSGE models
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Note: 90% confidence interval width. The IRF under investigation is the response of hours to a technology

shock in CKM and CEV, and the response of GDP to a monetary policy shock for SW.

documents how long-lag VARs attain coverage rates that are 1) reasonably good overall, 2)
comparable to those for short-lag VARs for the CKM and CEV models, 3) much better for
the SW model, where short-lag VARs with short run restrictions go astray entirely.’

Figure 4 combines bias and variance in a different way, by plotting mean-squared errors

9The huge swings in coverage for short-lag VARs in SW arise as the combination of substantial bias and
mechanically low uncertainty. As a result, from intermediate horizons onward, the econometrician becomes

relatively certain about the wrong point.
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Figure 3: Coverage across 1000 synthetic data sets from three DSGE models
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Note: 90% coverage. The IRF under investigation is the response of hours to a technology shock in CKM

and CEV, and the response of GDP to a monetary policy shock for SW.

(MSE) across horizons. The message is very much the same: at short horizons - where uncer-
tainty does not mechanically shrink - short-lag VARs are either comparable or considerably

worse than long-lag VARs.

3.3 Decomposing uncertainty effects

From the above results it may not be obvious that standard intuition - increased parame-

trization leading to increased uncertainty - holds at all. We here provide a decomposition to
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Figure 4: Median MSE across 1000 synthetic data sets from three DSGE models
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Note: Mean-squared error (MSE). The IRF under investigation is the response of hours to a technology
shock in CKM and CEV, and the response of GDP to a monetary policy shock for SW.
measure the impact of the standard intuition on the total variance effect.

Figure 5 plots the Monte Carlo distribution of CI width for three types of impulse re-
sponses. Specifically, for each sample of data from the DSGE model, we measure the CI
width around the contemporaneous impulse response for CKM and SW, and the second

horizon for CEV.! The medians of these two distributions are already contained in Figure

10While similar effects are at work at longer horizons for all models considered, they are harder to disen-

tangle due to the mechanical reduction in uncertainty for short-lag VARs, as apparent in Figure 2. For CEV
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2. For short-lag VARs, here illustrated by a VAR(4), the dashed line (B4, ¥4) plots the distri-
bution of CI widths across all 1000 draws, based on the lag polynomial B(L) and covariance
matrix 3 of a short-lag VAR(4), denoted by By and ¥4. Similarly, the solid line (Bsg, X30)
plots the distribution of CI widths for a long-lag VAR, here illustrated by a VAR(30), based
on its lag polynomial B(L) and covariance matrix 3, denoted by Bsg and 3. Comparing
these two distributions confirms the earlier results: long-lag VARs do not necessarily imply
overwhelmingly dispersed uncertainty bands.

To understand why, and to relate our results to the standard intuition, we construct the

following counterfactual impulse responses:
IRF = f(Bso(L),%4).

These hypothetical IRFs are constructed using the (many) reduced form coefficients of a
long-lag VAR, Bs¢(L), combined with the reduced form covariance matrix of a short-lag
VAR 3. Such IRFs can be interpreted as isolating the effect of increased parametrization.
They shut down the effect of misspecification reduction by ignoring the reduced bias in
Y. The dotted (Bsg, X4) distributions in Figure 5 show the CI width associated with these
counterfactual impulse responses. Standard intuition dictates that long lag length makes the
entire distribution shift outward, through the additional uncertainty created by the strong
increase in number of parameters.

It is immediately apparent that, across models, the dotted distribution does not un-
equivocally lie to the right of the dashed distribution. In other words, the strong increase

in number of parameters need not imply an increase in uncertainty. For the SW model,

the contemporaneous (h = 0) response of hours to technology shocks is subject to a zero restriction and is

thus uninformative. The figure therefore contains the IRF uncertainty distribution for the horizon i = 1.
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Figure 5: CI width distribution across 1000 synthetic data sets from three DSGE models
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Note: CI width (90%). The IRF under investigation is the response of hours to a technology shock in CKM
and CEV, and the response of GDP to a monetary policy shock for SW. For CKM and SW horizon h = 0.

For CEV horizon h = 1.

there is no effect at all from increased parametrization, since the short-run restriction im-
plies that the contemporaneous IRF only depends on ¥ and not on B (L). For the CEV and
CKM models the right tail of the CI width distribution becomes fatter, as standard intuition
would suggest. However, two observations stand out. First, the increase in CI width is not
overwhelming. Second, a significant portion of the mass is shifting to the left of the dashed,

short-lag distribution, indicating reduced uncertainty.
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The fact that increased parametrization does not invariably increase uncertainty is at
odds both with standard intuition (less degrees of freedom) and with a well-known omitted
variables result. Particularly, coefficient estimates b; in (2) are not only biased, but also have
too low variance. Intuitively, to the extent that omitted variables correlate with included
ones, the explanatory power of those included will appear to be larger than it really is.
Analytically, if we denote the coefficients on X7 in the correct regression (which does include
X3) by by 2, then

Var(by) < Var(byz). (4)

This suggests that by including additional relevant variables one increases the variance of
coefficients. We now provide detail on the effects in each of the individual models, which
will lay bare the reasons for these seemingly counterintuitive results.

Let us start with the SW model in Figure 5. As mentioned above, since identification is
based on short run restrictions, contemporaneous IRFs are not a function of B(L), only of
>.. Hence, the dashed and dotted lines overlap. The effect of misspecification reduction, on
the other hand, substantially reduces uncertainty, as can be seen by the shift to the solid
distribution.

Now consider the CI width distribution for the CEV model. Here, taking into account
the long-lag polynomial clearly only partially results in an increase in uncertainty measures.
To see the reason for this, note that IRFs are functions involving multiple coefficients. As a
result, covariance between coefficients becomes an issue. For the sake of argument, consider
the simplest possible function involving two parameters in (1), their sum. Let X7 = [ X34, X1p]

and denote the corresponding point estimates by by, and by,. Then the variance of the sum
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of the two coefficients in b; in the equation that omits X, is
V(bia + bip) = V(b1a) + V(1) + 2C0ov(b1g, bp)- (5)
Similarly, the variance of the sum in the correct regression (which includes X5) is
V(bia2 + bip2) = V(bia2) + V(biv2) + 2C0v(b1a.2, bis.2)- (6)

While we know that each of the first two terms is smaller in (5) than the corresponding
terms in (6), the presence of the covariances prevents any automatic conclusion on whether
V(b1a + b1p) ; V(bia2 + biv2)-

Thus, as soon as one considers functions that combine coefficients of a regression subject
to omitted variables, the usual variance relation in (4) can break down. This explains the
shift from the dashed to the dotted distribution in the CEV model, and particularly why
there can be significant mass shifting towards lower uncertainty despite having a big increase
in the number of parameters.

The quantitatively more important effect on uncertainty is not due to the big increase in
parametrization, however, but rather the effect of the reduction in misspecification. This is
illustrated by the shift from the dotted to the solid distribution.

Finally, consider the CKM model in Figure 5. The dotted line in the figure shows how
increased parametrization, along the lines of standard intuition, tends to shift the distribution
of uncertainty outward compared to the short-lag VAR. Here, too, there is some mass that
shifts leftward. As in the case of the CEV model, this can occur because IRFs involve a

combination of parameters.!! Despite the push toward increased uncertainty following the

' The reduction in uncertainty in the dotted distribution can also be the result of reduced misspecification
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increase in number of parameters, once the misspecification effect through ¥ is incorporated
long-lag VARSs are associated with smaller, not larger uncertainty.

Thus, the figures show the uncertainty trade-off: increased parametrization (By; — Bsp)
which can - but need not - push the distribution outward (from dashed to dotted) vs. reduced
misspecification (X4 — X30) which shrinks uncertainty and thus pulls the distribution to the
left (from dotted to solid). In sum, while standard intuition on increased parametrization
is partially correct and clearly part of the story, misspecification reduction tends to have
more substantial variance effects. As a result, for VARs on data generated by standard
DSGE models, the total effect of increasing the lag length can easily imply a reduction in
variance. While the simulation setup provides ample insight into VAR inference in typical
macroeconomic samples, the empirical macroeconomist does not have the luxury of knowing
the DGP. We now ask if long-lag VARs are also viable in the data by revisiting a few

well-known empirical VAR studies.

4 Empirical applications

4.1 Application 1: Technology shocks and hours

Much of the debate about the use and pitfalls of VARs centered on the question of the
hours response to technology shocks. Gali’s (1999) finding that hours fall after a positive

technology shock was met with severe backlash. On the theoretical front, CKM stressed that

in B(1), documented by Sims (1972), in combination with long-run identifying restrictions. This effect
exists because B(1) enters the identification procedure in the case of long-run restrictions. For more on the

importance of B(1), see Christiano et al. (2004).
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lag truncation bias makes short-lag VARs with long-run identification restrictions unable to
recover true IRF. On the empirical front, Chang and Hong (2006) applied Gali’s approach
to 458 US manufacturing sectors and found that most sectors exhibit a positive rather than
a negative hours response. With the knowledge that long-lag VARs overcome the truncation
problem and may still allow precise inference in realistic samples we now revisit that debate.
Specifically, we ask whether long-lag versions of the VARs of Gali (1999) and Chang and
Hong (2006) imply excessive uncertainty and whether their conclusions are different from the
original short-lag versions. We use the same samples as the original studies: quarterly US
data 1948:1-1994:4 for Gali (1999; 4 quarterly lags) and annual sectoral US data 1958-1996
for Chang and Hong (2006; 1 annual lag). We use the same Bayesian methods as in the
Monte Carlo evaluations.

Figure 6 shows the Gali (1999) result for VARs of increasing lag length. The estimated
impact effect of technology shocks on hours is invariably negative, regardless of the lag
length. This effect is significant for VARs with (quarterly) lag lengths up to p = 20 (5
years). At longer lag lengths (e.g. p = 28,36) the effect turns insignificant. The bottom
row shows that CI width does not obviously increase with the lag length. While the VAR(4)
has minimal variance at horizon A = 0, the long-lag VARs often have smaller variance at
horizons h = 2,3,4. At longer horizons h > p mechanical effects start kicking in for short-
lag VARs. Broadly speaking, however, for horizons h < p VARs of different lag length have
largely comparable CI width.

Figure 7 (top panel, dashed line) contains our replication of Chang and Hong’s (2006)
result: the majority of sectors see an increase in hours in the wake of a positive technology

shock. The bottom panel shows the associated cross-sectional distribution of CI width.
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Figure 6: Hours response to technology shock: Gali (1999)
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Note: The top row shows IRF and CI (68% and 90%) for VARs of increasing lag length. The bottom row
overlays CI width (90%) for the different VARSs.
Combined, the short-lag VAR finds 203 significantly positive sectors and only 46 significantly
negative (Table 1).

The results for the long-lag VAR are striking. First, the point estimates differ dramat-
ically. The cross-sectional distribution of IRFs shifts substantially to the left in Figure 7
(top panel, solid line). While short-lag VARs estimate 70% of sectors (Table 1: 317/458)

respond positively, long-lag VARs find 50% of sectors respond positively and the other half
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Figure 7: Hours response to technology shock: Chang and Hong (2006)

Cross-sectional distribution of IRF

15 T T T T T T
Ll o w  1lag
~ — () Iags
10 F = = == 1 lag: median -
10 lags: median
5 _ 2t |
0 Il
-0.15 -0.1 -0.05 0 0.05 01 0.15 0.2

Cross-sectional distribution of Cl width

— a1 lag

\ m— 10 lags
= = = = 1 lag: median N
10 lags: median

i i . B

.04 0.06 0.08 0.1 012 014 016 0.18 0.2

negatively. Second, variance does not become excessively large. The bottom panel of Figure
7 shows that long-lag VARs have mostly lower variance than their short-lag counterpart:
the cross-sectional distribution of CI width predominantly shifts to the left for long lags.
Combined, the number of industries that differ significantly from zero is almost the same for
short and long-lag VARs (249 and 244 respectively). Hence, once again, long-lag VARs do
not exhibit excessive variance, rather the opposite. While there is a stark contrast between
the short-lag results of Gali (1999) and Chang and Hong (2006), long-lag results seem more

in line with one another. In contrast to the conflicting results from short-lag VARs, long-lag
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VARSs support both salt and freshwater camps.

Table 1: Short-run hours response to technology shock - Chang and Hong (2006)

1 lag

10 lags

Number of industries

Number of industries

Positive | Negative | Total Positive | Negative | Total
Estimate (median) | 317 141 458 229 229 458
Significant at 10% | 203 46 249 128 116 244

We take from this evidence that long-lag VARs are a viable, feasible tool in the macro
empiricist’s toolkit. Long-lag VARs do not imply excessive variance even in realistic samples.
The evidence also suggests that there are substantial effects on point estimates, confirming

the importance of truncation bias also in practice.

4.2 Application 2: Monetary policy shocks

Perhaps most of the development of VAR methods involves the study of monetary policy
shocks. We now revisit a state-of-the-art monetary policy VAR and again ask to what
extent long-lag VARs change inference. Our analysis revisits the influential work of Miranda-
Agrippino and Ricco (2021), who construct one of the most convincing instruments for
monetary policy shocks to date. Through the lens of a short-lag VAR (i.e. a VAR(12) with
monthly data), these shocks have significant and long-lasting effects on real and nominal

variables. The thick line with shaded confidence band in Figure 8 reproduces that result
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(i.e. Figure 3 in Miranda-Agrippino and Ricco (2021)). The negative effects on industrial
production and CPI are immediate and remain significant for at least two years. Point

estimates at the two year horizon are even more negative than the immediate impacts and

are invariably significant.

Figure 8: Monetary policy shock: Miranda-Agrippino and Ricco (2021)
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Note: Thick black line and grey band: VAR(12). Longer lag VARs in coloured lines: thick

median, thin confidence bands.

The non-black lines in Figure 8 show IRFs based on VARs with increasing lag length.!?

12We use the replication codes of Miranda-Aggripino and Ricco (2021) and change only the lag length.
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As soon as the VAR contains lags of two years and more, there is no evidence that monetary
policy has effects on industrial production or CPI that extend further than a year out. All
the confidence bands include zero for any horizon A > 13. Even a VAR(24) finds IRFs
that disagree with those of the VAR(12): their point estimates lie outside of each others’
confidence bands for multiple horizons. VARs with lags of three years and more strengthen
that conclusion, and are also very close to one another in terms of point estimates.

It is worth emphasizing that the finding that monetary policy has no significant effects
two years out is not the result of prohibitively large uncertainty in long-lag VARs. As the
lower panel in Figure 8 shows, CI width is comparable for short and long-lag VARs at all
horizons where uncertainty is not mechanically low for short-lag VARs.!'* The main change
in conclusions comes from substantial differences in point estimates. The within year one
average point estimate of a 100bp. rate increase on industrial production for long-lag VARs
robustly hovers around -0.7%, while the short-lag VAR puts it at -1.36%.

The long-lag VAR researcher can find comfort in the fact that her conclusions are robust
to perturbations in the lag length. The short-lag VAR researcher, by contrast, must admit her
results are fragile: even changing lags from one to two years significantly affects conclusions.
Our results complement the findings of Baumeister (2025) in an almost identical VAR setup.

She argues the very long term (around 8-10 years) significant effects of monetary policy

13Tt is worth pointing out that the mechanical breakdown in uncertainty documented in the simulations
in Section 3 pertained to stationary VARs, where e.g. labor productivity and GDP are specified in growth
rates. In the present application the VAR is specified in (log) levels and thus has roots close to one. The
bottom row of Figure 8 illustrates that the mechanical breakdown in uncertainty of short-lag VARs relative

to long-lag VARs also occurs in such cases.
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in Jorda et al. (2025) are purely due to lag truncation. Her argument as well as our
simulations suggest it is unwise to trust long-horizon implications of short-lag VARs, as
inference becomes mechanical. On top of that, the present application shows that important
short term conclusions are also subject to lag truncation. Long-lag VARs suggest there
are no discernible effects of monetary policy farther than one year out. And even within
the first year, long-lag VARs estimate real and nominal effects of monetary policy that are

substantially smaller than what short-lag VARs find.

5 Discussion and practical advice

5.1 On choosing the lag length

All of the above results are in terms of structural inference. None of our results imply
that long-lag VARs ought to be used for matters such as forecasting. For instance, the large
dimensionality of the lag polynomial in long-lag VARs prohibits any success in forecasting due
to the lack of parsimony. While one can certainly envisage ways to reduce the dimensionality,
that is not the issue here. Rather, if one wants to draw structural conclusions, e.g. by means
of IRFs, then misspecification concerns are essential. Therefore, if forecasting is not the main
purpose of the model, it may be ill-advised to trust lag-selection criteria which purely focus
on forecasting/parsimony. Long-lag VARs should be in the set of models considered and not
ruled out based on forecasting criteria. Recent work by Gonzdlez-Casasis and Schorfheide
(2025) takes significant steps in that direction by proposing criteria that acknowledge the

model will also be used for structural inference.
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Yet the applied researcher does not need to wait for the field to settle on ideal novel
criteria. A simple heuristic approach researchers can take is to plot the structural moment(s)
central to the research question against lag length. If the structural conclusion dramatically
changes as the lag length increases, that should raise a red flag and is a clear indication
truncation is important for the question at hand. Settling on a longer lag length where
structural conclusions are robust to perturbations in the lag length hedges against truncation
effects in short-lag VARs. The researcher can lean on the traditional econometric adage
that adding potentially irrelevant variables (here: lags) is better than omitting relevant
variables. The presumption that adding more lags necessarily leads to prohibitively large
uncertainty is hereby disproven. This practice would easily constitute an improvement over
the current widespread approach that either leaves lag choice up to forecasting criteria,
or where researchers just state they use one year’s worth of lags and we all accept that
as appropriate for macroeconomic data. Our study of monetary policy shocks exemplifies
how this heuristic approach is directly useful in practice and meaningfully affects structural

inference.

5.2 On model size and inference procedures

The variance trade-off we document applies to all VAR approaches that rely on a correct
(untruncated) reduced form. It does not depend on the number of variables in the VAR, nor
on whether the researcher uses frequentist or Bayesian methods, nor on the identification
assumptions.

Yet a frequentist VAR researcher will, as the lag length increases, ultimately bump into
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a degrees of freedom problem. An n-variable VAR(p) has n + n?p coefficients and w

elements in the variance-covariance matrix. As lags grow, the number of parameters to be
estimated increases rapidly, and more so when there are more variables in the VAR. At some
point there just are not enough observations to estimate all these parameters. While this is
a relevant theoretical consideration, short-lag VARs with one year of lags are far removed
from the theoretical limit for typical macroeconomic data. To see that, let us consider Sims
(1980) as an indicative benchmark - it is, after all, the study that brought VARs to the fore.
In a six-variable VAR with up to two year lags he has roughly two observations per estimated
parameter. That is similar to the ratio one obtains in both our technology 2-variable VARs
with ten year lags. KEntertaining larger systems poses no practical difficulty either. The
short-lag VAR evaluation of Li et al. (2024a), for instance, focuses on 5-variable VARs for
a quarterly dataset spanning 64 years. It takes more than six year lags before the number
of parameters reaches half the number of data points. They thus easily allow investigating
the effect of adding several years of lags. This comparison of data points to number of
parameters is not meant as a target for how far to extend lags. Instead, it illustrates that
with realistic macroeconomic data samples the VAR researcher already has ample flexibility
to incorporate much longer lag lengths.

Importantly, four and a half decades of empirical macro research has jumped on the
suggestion of Sims (1980) and developed various methods for dimension reduction in VAR
models. All of those methods enable incoporating longer lags easily.

On the frequentist side, those working with many variables often adopt dynamic factor
models or FAVARs (see e.g. Stock and Watson (2010) for an overview). And adding lots of

lags to the dynamic factor equation comes at low cost in terms of increased parametrization.
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The advent of big data has also seen ample recent research in economics and beyond on
Lasso and Ridge techniques to facilitate the estimation of large VARs. Here too, including
more lags is easy to encompass.

Bayesian techniques are incredibly popular in applied VAR research. Adding lags in
Bayesian VARs is particularly straightforward since Bayesian approaches inherently avoid
over-parametrization. One can think of priors generally as adding data points, which au-

4 Therein lies the power of

tomatically counteracts potential degrees of freedom issues.!
Bayesian methods in dealing with big data, where dealing with lots of parameters is the
central issue (e.g. Giannone et al. (2021)). As with short-lag BVARs, the researcher has
a wide menu of priors to choose from (see e.g. Hauzenberger et al. (2024)). Any of those
priors can accommodate long lags. Whether the prior weights short and long lags differently
is up to the researcher and should depend on the data and problem at hand. Our general
result is not a call to favor certain priors over others. It is a call to incorporate long lags
in the model such that posterior estimation can attach weight to them where relevant and
thus overcome the problem of truncation. Our monetary application is an example where
the prior heavily favors short over long lags (i.e. random walk prior), yet despite that esti-
mation clearly finds long lags important in the data, as evidenced by the meaningful change
5

in posterior structural inference.!

In sum, long-lag VARs should universally be considered in applied macro research. There

4 Conjugate priors (e.g. Minnesota prior), for instance, are often implemented by adding dummy obser-

vations. Yet the point stands more generally, as priors serve the purpose of “regularization” in estimation.

15 Antolin-Diaz and Surico (2025) is another example where long lags matter despite priors tilting towards
short lags. Their sample is however much longer than the data span available for most macroeconomic

questions.

31



is no need to adapt one’s favorite modeling approach or inference method. All that is required

is to allow for significantly longer lag lengths than current practice does.

5.3 On the horizon of interest and lag length: h vs. p

Both our simulations and empirical applications document the mechanical breakdown in
inference when the IRF horizon h extends beyond the number of lags p. Long-lag VARs
hedge against that breakdown and provide a fairer representation of the actual uncertainty
at long horizons faced by the researcher. These results help in understanding how a short-lag
researcher may find spurious significant long term effects. Baumeister (2025) provides an
example of such a situation. Jorda et al. (2025) find significant long term (8 to 10 years)
effects of monetary policy on the economy. Part of their evidence is based on a series of
prominent short-lag VARs in the literature. Baumeister (2025) shows that these long term
effects vanish when long-lag VARs are considered. This contrast can be understood as the
consequence of the short-lag VAR researcher facing a significant bias in IRF and significantly
underestimating uncertainty around those IRF's at longer horizons. Long-lag VARs address
both problems.

But our results say more. Lag truncation is really a concern for every VAR researcher, as
inference about horizons h < p is also importantly affected. As evident from the literature
and throughout our analysis, lag truncation induces bias at every horizon, including the very
short ones. And again, long-lag VARs effectively hedge against that bias. That this matters
for empirical work is clear from both our applications, where short term (h < p) structural

conclusions change dramatically as the lag length increases.
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In sum, every VAR researcher should be concerned with lag truncation, regardless of the
horizon of interest that the structural question centers on. And long-lag VARs provide a

practical tool to do so.

5.4 On local projections

The reader may wonder whether local projections are a better safeguard against lag trunca-
tion, in light of many of the advantages claimed in the literature comparing LPs and VARs.
They are not. To see why, Ludwig’s (2024) central theorem establishes that LP estimates
combine VARs of increasing lag lengths. Specifically, an LP(p) at horizon h combines esti-
mates of a VAR(p), VAR(p + 1), ..., VAR(p + h — 1). In practice LPs invariably use short
lags. In fact, a common motivation for lag choice in LP is to use the VAR lag length dictated
by information criteria (see e.g. the discussion in Baumeister (2025)). Yet short-lag VARSs
suffer from truncation bias. Hence, whenever lags are truncated, this bias necessarily carries
over into LP estimates. Long-lag VARs, by contrast, guard against truncation bias. And as
our results show, despite their larger model size, long-lag VARs may simultaneously reduce
variance. In principle, long-lag LPs can also be unbiased because they build on long-lag
VARs. But if the VAR(p) has long enough lags to address lag truncation, then while the
LP also becomes unbiased it simultaneously becomes less efficient since it combines multiple
VARs and therefore has many more coefficients (Ludwig (2024)). Hence, from both a bias
and a variance perspective, long-lag VARs are preferable over LPs. Baumeister (2025) pro-

vides simulation evidence that further reinforces the point that long-lag VARs outperform

LPs.

33



6 Conclusion

We document a general trade-off. Of course, it is possible to design models or find data
for which the balance of the trade-off leans toward short lag lengths. However, contrary
to common wisdom, long lag length need not imply prohibitively large imprecision. While
increased parametrization in itself may increase uncertainty, this effect is counteracted by
a reduction in misspecification. For VARs estimated on data generated by frequently used
DSGE models, longer lag length tends to imply less bias and more precise inference. In
empirical applications we find that the variance trade-off in VARs is not particular to data
generated by DSGE models. For long-lag versions of prominent VARs in the literature, the
balance of uncertainty effects seems to favor misspecification reduction over parametrization
concerns. In particular, we find that structural results can be substantially different from
their short-lag counterparts and that uncertainty does not necessarily become excessively
large. Long-lag VARs are therefore an important instrument in the empirical macroecono-

mist’s toolkit.
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