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Abstract

This paper develops a payment-centric model of stablecoin runs with endogenous
consumer adoption and seller acceptance, making the issuer’s liability composition
an equilibrium outcome. Stablecoin fragility arises endogenously from shifts in the
composition of the holder base as adoption expands across transactional environments.
Broader adoption attracts users who derive lower transactional value from holding
stablecoins, increasing the aggregate propensity to run and generating a destabilizing
run externality that individual adoption decisions do not internalize. In addition,
sellers’” multi-homing choices create uninternalized network effects that erode the
transaction value of bank deposits. By linking adoption dynamics to issuer fragility,
the model provides theoretical foundations for regulatory concerns about excessive
stablecoin adoption and delivers novel testable implications. The analysis further
shows that seigniorage and congestion effects can mitigate run risk, whereas issuer

moral hazard can amplify fragility, even in the presence of regulatory disclosure.
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1 Introduction

Across banks, money market funds, mutual funds, and short-term funding markets,
investor composition is an important driver of fragility (Iyer et al.2016; Kacperczyk and
Schnabl 2013} [Chernenko and Sunderam|2014; Cipriani and La Spada 2024)E| A similar
composition-based mechanism appears relevant for stablecoins, which mimic the safety
of bank deposits through fiat-currency pegs but remain vulnerable to runs.

The temporary depeg of the stablecoin USDC following the failure of Silicon Valley
Bank (SVB) in March 2023 serves as an illustration. After the USDC issuer confirmed
it’s $3.3bn reserve exposure to SVB, selling pressure surged on centralized cryptocur-
rency exchanges—venues with a large retail presence—pushing the USDC price down by
around 10%. By contrast, activity on decentralized exchanges was concentrated among
long-active, crypto-native addresses that arbitraged price deviations and accumulated dis-
counted USDCE| This contrast highlights how shifts in the coin holder composition have
the potential to affect run dynamics, a mechanism that becomes increasingly important as
stablecoins expand beyond their crypto-native core into broader payment use.

This paper develops a payment-centric theoretical model in which stablecoin adop-
tion, user heterogeneity, and issuer fragility are jointly determined. In practice, the
heterogeneity among stablecoin holders is substantial. Use cases range from crypto-native
functions—such as settlement on cryptocurrency exchanges and decentralized finance-to
real-economy applications, including cross-border payments, remittances, currency substi-
tution, and privacy-enhanced payments. In the model, the diversity of these transactional
environments implies substantial variation in the transactional value of holding stablecoins.
This matters not only for adoption but also for fragility due to its effect on the composition
of stablecoin holders, because holders with lower transactional value place less weight
on continued access and are therefore more prone to redeem during stress, generating a

composition-driven externality that individual adoption decisions do not internalize.

The continued growth of stablecoins beyond the crypto-native niche strengthens the
relevance of this composition effect, motivating a systematic analysis of adoption and
fragility. Despite the USDC episode, which revealed the susceptibility of even fully
backed issuers to runs, the market has expanded rapidly. In October 2025 the market

!Fragility also depends on the characteristics of the instruments held by intermediaries (see Chen et al.
(2010) and |[Falato et al.|(2021) for asset illiquidity and other portfolio vulnerabilities).

“See, e.g., contemporaneous market analysis by Chainalysis on the March 2023 USDC depeg (https://
www.chainalysis.com/blog/crypto—-market—-usdc—-silicon-valley-bank/), which document
sharp selling pressure and net outflows on centralized exchanges alongside substantial decentralized-
exchange activity consistent with arbitrage by long-active on-chain addresses.


https://www.chainalysis.com/blog/crypto-market-usdc-silicon-valley-bank/
https://www.chainalysis.com/blog/crypto-market-usdc-silicon-valley-bank/

capitalization of dollar-pegged stablecoins surpassed $300bn and gross on-chain settle-
ment volume reached $27.6tn in 2024, or approximately $6tn after adjusting for inorganic
activityﬁ Crucially, the real-economy applications such as B2B supply-chain payments
and remittances are important drivers of this growth (Jhanji et al.2025; BIS 2025) and
are associated with user segments that, through the lens of the model, may derive lower
transactional value and have higher redemption sensitivity, thereby increasing fragility.

Regulatory concerns about stablecoin fragility and the risks of excessive adoption pro-
vide additional motivation for the analysis in this paper. Stablecoins are high on the
regulatory agenda, reflecting their role as a critical link between the rapidly evolving
crypto ecosystem and traditional financial marketsﬁ In the United States, the GENIUS Act
of July 2025 establishes a comprehensive federal oversight framework for dollar-pegged
stablecoins. In the United Kingdom, the Bank of England proposes a regulatory regime
requiring systemic sterling stablecoins to hold at least 40% of their backing assets in cen-
tral bank reserves to ensure par convertibilityﬂ In the euro area, the European Central
Bank (ECB) is advancing its work on the digital euroﬁ one explicit objective of which is
to prevent private stablecoins from displacing bank deposits as the primary medium of
exchange-that is, to limit excessive stablecoin adoption[]

Addressing these concerns requires a theoretical framework that connects stablecoin
adoption, holder composition, and issuer fragility, and allows to clarify why adoption
may become excessive. This paper offers such a framework and addresses three research
questions: (i) How is issuer fragility shaped by the adoption choices of heterogeneous
users and the acceptance of stablecoins across different transactional environments? (i)
What are the theoretical foundations for regulatory concerns that stablecoin adoption
could become excessive relative to other media of exchange? (iii)) How do structural
teatures—such as payment preferences, network effects, transaction costs, seigniorage, and
issuer moral hazard-shape stablecoin fragility?

3See Figure |Al)in the Appendix for the expansion of the stablecoins market and Higginson and Spanz
(2025) and Visa (https://www.visaonchainanalytics.com) for the role of stablecoins in transactions.

*See Barthelemy, Gardin and Nguyen| (2023) and |Ahmed and Aldasoro| (2025) for empirical studies of
the link to commercial paper and treasury markets, respectively.

See the Bank of England’s consultation paper on the "Proposed regulatory regime for sterling-
denominated systemic stablecoins" (BoE 2025).

®The potential launch of the digital euro is in 2029, conditional on the adoption of the relevant legislation.
See the October 2025 progress report on the preparation phase of a digital euro (ECB|2025).

“For a discussion of the threat of stablecoins to bank deposits, see Philip Lane’s speech "The digital
euro: maintaining the autonomy of the monetary system" (20 March 2025): https://www.ecb.europa.
eu/press/key/date/2025/html/ecb.sp250320_1~41c9459722.en.html, and Piero Cipollone’s
speech “Preparing the future of payments and money: the role of research and innovation” (26 September
2025) on the digital euro’s potential to mitigate this risk: https://www.ecb.europa.eu/press/key/
date/2025/html/ecb.sp250926~e856d2e386.en.htmll


https://www.visaonchainanalytics.com
https://www.ecb.europa.eu/press/key/date/2025/html/ecb.sp250320_1~41c9459722.en.html
https://www.ecb.europa.eu/press/key/date/2025/html/ecb.sp250320_1~41c9459722.en.html
https://www.ecb.europa.eu/press/key/date/2025/html/ecb.sp250926~e856d2e386.en.html
https://www.ecb.europa.eu/press/key/date/2025/html/ecb.sp250926~e856d2e386.en.html

To address these questions, I develop a parsimonious two-period model with two
media of exchange-bank deposits and stablecoins—in which the diversity of stablecoin use
cases and their link to fragility play a central role. Both media of exchange are subject
to endogenous acceptance by "sellers" and endogenous adoption by "consumers". In the
model, these sellers stand broadly for entities providing access to different transactional
contexts—ranging from crypto-native functions to real-economy applications. Consumers
differ in their demand for these transactional contexts, reflecting preferences for particular
goods or anonymity, as well as the convenience of a medium of exchange, and potential

transaction-cost advantages for specific use cases such as cross-border payments.

Unlike deposits, which are insured and risk-free, the stablecoin issuer is vulnerable
to runs. The fragility of the issuer is modeled as a global games run problem. The key
innovation is to model how heterogeneous payment preferences drive stablecoin demand,
while simultaneously affecting fragility. Global games have been used extensively to study
bank runs, currency attacks and debt runs (Carlsson and van Damme [1993; |Vives 2005).
This class of models is well suited to studying stablecoin runs, because issuers operate a
unilateral exchange rate peg and share the same vulnerabilities as uninsured bank debt.
Compared to standard banking models, heterogeneity in stablecoin use cases requires
heterogeneous global games payoffs (Sakovics and Steiner|2012).

The baseline model spans three dates (t = 0, 1,2) and features a stablecoin pegged to a
fiat currency. The economy comprises two types of consumption-good sellers, "deposit-
native" and "stablecoin-native," characterizing their preferred habitat. By default, these
sellers only accept their native medium of exchange at t = 2: insured bank deposits or
stablecoins, respectively. Att = 0, sellers may choose to multi-home, i.e. acceptboth monies,
by incurring a cost, and consumers decide whether to hold stablecoins or deposits, forming
expectations about seller acceptance profiles at r = 2. This decision is consequential due
to a matching friction: consumers are randomly matched with sellers and incur transaction

costs if they do not hold the medium of exchange accepted by their matched seller.

As discussed earlier, consumer heterogeneity is a key model feature, which is captured
by a heterogeneity in matching probabilities with the two types of sellers at t = 2. Conceptu-
ally, the goods sold by stablecoin-native sellers can be viewed as shorthand for different
stablecoin use cases-implying that the two media of exchange compete across distinct
transactional environments: deposit-native and stablecoins-native.

At t = 1 a run occurs if enough coin holders demand conversion into deposits, such

that the stablecoin issuer becomes insolvent. As standard in the global games literature,
coin holders receive a noisy private signal that is correlated with the issuer’s fundamental



before deciding whether or not to convert. The unobserved fundamental captures the
issuer’s profitability, which may be affected by an adverse shock to the quality of the
assets backing the stablecoins or by exposures to other risks, such as cyber risk.

There exists a unique monotone equilibrium of the conversion game where coin holders
optimally demand conversion at the interim date whenever they receive a private signal
that is below a certain threshold, suggesting an unfavorable fundamental realization. I
analyze how this signal threshold and, hence, the probability of runs depends on various
factors that play an important role in the market for stablecoins. Moreover, I take the effect

on the optimal stablecoin adoption decisions at the initial date into account.

The analysis identifies two primary mechanisms that justify regulatory concerns re-
garding excessive stablecoin adoption. First, there is a run externality driven by consumer
heterogeneity: new coin holders derive lower transactional utility than early adopters
(e.g., "crypto enthusiasts"). Consequently, the marginal adopter fails to internalize that
broader adoption at t = 0 triggers a destabilizing composition effect—specifically, it dilutes
the creditor base with coin holders who have a lower threshold for redeeming at r =1,
thereby increasing issuer fragility. Second, the marginal adopter does not internalize net-
work effects, which arise when sellers face costly multi-homing decisions. An anticipated
increase in stablecoin adoption incentivizes sellers to shift acceptance away from bank
deposits. This undermines the transactional value of deposits, creating an uninternalized
erosion of bank deposits. From a policy perspective, this mechanism formalizes the con-
cerns surrounding the "Facebook Libra" episode, where authorities cautioned that rapid,
widespread stablecoin adoption could reduce the role of banks in the payments market,
with adverse implications for bank profitability and deposit disintermediation.

The model further demonstrates that factors increasing the fundamental attractiveness
of stablecoins generally reduce their fragility. Intuitively, higher transactional utility
makes the marginal coin holder-who is indifferent between holding and converting—less
prone to run. This applies, for instance, to an increase in seller acceptance. Consequently,
higher adoption can be stabilizing if it allows fixed operating costs to be spread across a
larger user base or if positive network effects from seller acceptance enhance the coin’s
medium-of-exchange value. However, in the absence of such countervailing forces, higher
adoption strictly increases run risk due to the destabilizing composition effect.

Structural features of the stablecoin ecosystem also play a critical role. Factors that
increase issuer revenue, such as fees and seigniorage, promote stability by strengthening
the issuer’s franchise value. Similarly, congestion effects—where transaction costs rise during

periods of stress—act as a stabilizer; a common feature of crypto networks based on decen-



tralized ledger technologiesﬂ Notably, this stabilizing effect can dampen run incentives

even when the costs remain below the exogenous transaction costs of the baseline model.

The theoretical framework yields concrete regulatory implications. First, a Pigouvian
adoption levy can internalize the run externality that drives excessive adoption and fragility.
Second, to address the unpriced network effects eroding the transactional value of de-
posits, policymakers could employ a similar levy or acceptance-side instruments, such as
targeted subsidies for seller multi-homing. Third, preserving market-based congestion
pricing during stress (or embedding automatic conversion fee surcharges) helps to stem
agains runs. Fourth, when the issuer faces a portfolio choice problem, disclosure alone can
be insufficient to align risk-taking with the social optimum, highlighting the necessity of
binding reserve-quality requirements and capital buffers. Finally, narrow-bank designs combined

with access to liquidity backstops can eliminate panic-based equilibria altogether.

This paper connects to, and departs from, three strands of literature: (i) models of two-
sided currency competition with flexible exchange rates (Schilling and Uhlig|2019;|Arifovic
et al. 2025), (i1)) models of peg stabilization for stablecoins (Routledge and Zetlin-Jones
2021), and (iii) models of currency attacks (Morris and Shin[1998; Corsetti et al. 2004) and
bank runs (Rochet and Vives|2004; Goldstein and Pauzner|2005) using the global-games
approach. Unlike the flexible-price models in (i), where shifts in currency adoption are
equilibrated by movements in the floating exchange rate, I study a money claim that is
redeemable on demand at par into a reference asset (e.g., bank deposits) and, therefore,
vulnerable to runs when stablecoin holders seek conversion. The key contribution relative
to (ii) and (iii) is to jointly endogenize seller acceptance and heterogeneous consumer adop-
tion, making the issuer’s liability composition an equilibrium object. Sellers” acceptance
choices determine matching probabilities across media of exchange, shaping the compo-
sition of adopters and thus the run threshold. This mechanism generates a novel run
externality and allows to analyze compositional effects. An aspect that is not studied in
Diamond and Dybvig| (1983)-type models, where the liability structure is typically taken
as given and the bank chooses assets to trade off returns, liquidity provision, and run risk.

This aspect differentiates my paper from a complementary starnd of research on sta-
blecoin arrangements and instability that emphasizes asset-side mechanisms and market
design. Motivated by the fall of the Bank of Amsterdam, Bolt et al.  (2024) show that a
decline in the service value of a fiat currency can heighten vulnerability to adverse funda-

mentals and insufficient central bank capitalization. Gorton et al.| (2025) rationalize how

8Due to block capacity limits, on-chain transaction fees are positively associated with trading volumes.
For example, during the run on Terra USD in May 2022, Ethereum gas prices quadrupled (see Figure|A2|in
the Appendix), which likely contributed to stabilizing Tether’s peg by making conversion more costly.



stablecoin lending can drive demand, Ahmed et al.| (2024) study theoretically and empir-
ically the ambiguous role of transparency, and Ma et al.| (2025) analyze how centralized
arbitrage affects run risk and secondary-market dislocations in a global-games framework.
In other related work, Uhlig| (2022) offers a theory that generates a gradual unfolding of the
LUNA and UST crash, as well as a quantitative interpretation. |Li and Mayer|(2022) build a
dynamic model of stablecoin and crypto shadow banking that features an instability trap
with token debasement when reserves are low. Finally, d’Avernas et al.| (2022) explore the
use of smart contracts to enforce pre-determined rules that prevent over-issuance, and

Klages-Mundt and Minca| (2021) study alternative stabilization mechanisms.

My paper also relates to the literature on digital money, crypto assets and central bank
digital currencies (CBDC). Agur et al.[(2022) study optimal CBDC design with an emphasis
on network effects and the convenience of different means of payment; two aspects that
also feature in my paper. Adoption also plays an important role for e-commerce platforms
such as Alibaba. Chiu and Wong| (2022) study the business model of platforms, who have
the choice between accepting cash and issuing digital money, and whether to allow the
digital money they issue to circulate outside the platform. Cong et al.|(2021) study how
user network externalities shape crypto asset adoption and prices. Ahnert et al. (2022)
analyze the choice of using CBDC for payments with a view on privacy. Addressing a
disintermediation concern related to CBDC,|Andolfatto (2021a) and Chiu et al.|(2023) argue
that CBDC does not lead to disintermediation and can increase banking competitionﬂ

The paper is organized as follows. The environment is described in Section 2l Section
solves the model, followed by a policy analysis in Section 4] Section [5|discusses several
extensions and additional insights for risk assessment. Section [p] presents novel testable
implications and offers pathways to bring them to the data. Finally, Section [7] concludes.

All proofs are in the Appendix and additional material is in an Online Appendix.

2 Environment

Consider a game with three dates (t = 0, 1,2) comprising a stablecoin adoption game played
at t = 0 and a stablecoin conversion (or withdrawal) game played at ¢ = 1, followed by
consumption at t = 2. The economy features a unit continuum of risk-neutral consumers,
a monopolistic stablecoin issuer, and a unit mass of competitive sellers. Consumers can
hold either insured bank deposits or stablecoins to transfer value across time.

9Other papers on disintermediation and bank stability includeWhited et al.(2022),[Barrdear and Kumhof
(2021), |Davoodalhosseini (2021), Schilling et al.| (2024)), Keister and Monnet, (2020) and [Williamson/ (2021).



Endowments and production. Each consumer is endowed with $1 in bank deposits at
t = 0. Sellers operate a constant returns to scale technology that allows them to produce
up to one unit of a divisible good at ¢t = 2, which they sell at a normalized price of $1

Bank deposits and stablecoins. Deposits yield a risk-free return r” > 0 when held from
t =0 tot =2 and earn no interest otherwise. Stablecoins are pegged 1-to-1 to the dollar
but may devalue due to issuer fragility. Specifically, the stablecoin issuer offers a 1-to-1
conversion at t = 0, 1,2 but invests reserves in a risky asset yielding 6 ~ U[0,0] at t = 2
or r < @ if liquidated att =1 with0 <8 <1< 6 and E[#] > 1. Moreover, a bankruptcy
cost ¥ > 0 applies if reserves fall short of the + = 2 payment obligations. Therefore, coin

holders face the risk of devaluation ex-post, creating strategic incentives to redeem early.

Seller acceptance decisions at = 0. Sellers choose which monies they accept for pay-
ment at = 2. A fraction 0 < A < 1 of sellers are type-B (bank deposit-native) and the rest
(1—A) are type-S (stablecoin-native). Sellers of each type may choose to add the non-native

medium of exchange at a cost. Each seller is matched with one consumer at ¢ = 2.

When deciding whether or not to multi-home, sellers compare the expected utility benefit
u > 0, which accrues when matched with a consumer who has the "right" money on hand,
with a heterogeneous fixed cost of accepting another money for payment at r = 2. Let
the fixed costs be given by 67 ~ U (85 ,SB] and &7 ~ U [QS,ES] for type-B and type-S sellers,
respectively, with SB,SS >y > QB , §S > 0. These costs capture the idiosyncratic burden of
establishing compatibility with an additional medium of exchange, such as the effort or
technological investment required to process stablecoin or deposit payments, and generate
well-defined cutoff rules that determine an endogenous seller-acceptance profile.

Let N € [0, 1] be the rate of stablecoin adoption determined by consumers in the second
stage of t = 0, i.e. the fraction of consumers who decide to convert their endowment of $1
in bank deposits to stablecoins. For a given belief about N, solving the sellers” problem,
the fractions of type-B/type-S sellers who multi-home (i.e. choose to accept both monies),
f2 and f5, and the fractions of sellers who single-home, f2 and /%, can be derived as:

FE(N) = max{0, 55} FA(N) =1 FA(N) 1)
F5N) = max{0, "2y () =1 5(w), @

where the adoption rate shapes seller acceptance as follows: df2/dN > 0and df5/dN < 0.

19Production costs are paid in fiat currency at ¢ = 2, consistent with the fact that most goods in crypto
markets are effectively priced in dollars and productive inputs are priced in fiat currency.



Given seller acceptance profiles, the total acceptance rates for deposits and stablecoins are:
B(N)=A+(1=2)f*(N).  S(N) =(1-2)+AfF(N).

The left panel of Figure 1| offers a graphical illustration of the total seller acceptance rates.

Consumer heterogeneity and matching. Consumers belong to groups g € {1,...,G} of
mass mg, with Y, m, = 1. Each group is characterized by a group-specific routing weight
o, € [0,1] indicating the likelihood of being matched with a deposit-native (type-B) seller,
where Y, m;®, = A. Let the matching probabilities depend on these routing weights and
on the seller-side acceptance profiles from Equations (I) and (@), as follows:

S B
pag(N) = Wy + (1-w)f(N) . psg(N) = @f"(N)  + (1-ag) . 3)
~— —_——— —— ———
prob. to match  prob. to match with prob. to match with  prob. to match
with type-B multi-homing type-S multi-homing type B with type S

where pp4(N) and ps 4 (N), respectively, denote the probabilities that a group g consumer
meets a seller who accepts deposits or stablecoins I assume that @, is decreasing in g, so
groups with higher g have a lower (higher) probability to meet a seller accepting deposits
(stablecoins), as illustrated in the right panel of Figure[l} Note that pp(N), ps(N) € [0,1]
and pp¢(N) + ps¢(N) > 1, where the inequality is strict whenever some sellers multi-home,
implying overlapping payment acceptance. By construction, the group-weighted averages
match aggregate seller-side acceptance rates: Y., mgpp¢(N) = B(N), Lo mgpse(N) = S(N) E

Transaction costs. Consumers face fixed conversion costs 7; when exchanging between
the two monies at 7 € {0,1,2}. A key model assumption is that there is an advantage to
having the "right" money on hand at r = 2, i.e., the cost of converting from one money to
another at short notice is higher than the cost of an ex-ante conversion at ¢ = 0. To capture
this idea, we normalize 7y = 0 and assume 7; > 0, 72 > 0. Economically, 7| captures interim
conversion frictions (such as fees or delays), while 7, captures point-of-sale frictions att =2
if a consumer meets a seller that does not accept the money she holds and must convert
on the spot. Holding the "right" money (or planning ahead) avoids paying TZE

UThis setting resembles directed search (Moen/1997; Burdett et al.[2001). Think of deposits and stablecoins
as two sub-markets. Sellers choose which rail to accept (and may pay a cost to multi-home), while consumers
direct their search according to their preference w,, introducing a tilt.

PIntuitively, each group g consumer faces a lottery over seller types with weights @, and 1 — @,; within
each type, only a fraction multi-home as captured by f2(N) and f5(N). Hence the matching probabilities
in Equation (3)) are convex combinations of seller acceptance rates, weighted by how often each consumer
group encounters different seller types.

13Recall that all coins issued during the game are redeemed and exchanged for their equivalent $ value
at r = 2. Unlike consumers, sellers are not facing a transaction cost to exchange coins. Note that the seller-
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Figure 1: Panel (a) shows the downward sloping total seller acceptance rates of deposits,
B(N), and the upward sloping total acceptance rates of stablecoins, S(N), as a function
of N. Linearity in N follows from the uniform distribution of seller multi-homing costs
and the upper bound on u. Panel (b) depicts the matching probabilities, ppq(N) and
Ps.¢(N), and their dependency on group-specific preference /routing weights. Consumers
belonging to a more stablecoin-oriented group, i.e., a group with a higher g, have a higher
(lower) probability to be matched with a seller accepting stablecoins (deposits).

Stablecoin adoption game in the second stage of 1 = 0. After seller acceptance profiles
are observed, consumers choose whether to hold deposits or convert and adopt stable-
coins. Let ap; € {0,1} be the choice of consumer i, where ap; = 1 denotes adoption. The
combination of transaction costs and heterogeneous matching probabilities lead to an
endogenous segmentation: consumers belonging to a more crypto-oriented group (such as

consumers belonging to group 5 in Figure|l) are more likely to adopt stablecoins.

Stablecoin conversion game atr = 1. At the interim date, each stablecoin holder becomes
active with probability k or passive otherwise. Active holders receive noisy private signals
correlated to the issuer’s fundamental, x; = 6 + ¢ with g ~ U[— €,¢], and decide whether
to convert early (or run), while passive holders are dormant till r = 2 As common in the
global games literature I consider the case of vanish private noise, e— 0, to simplify the
analysis. Leta;; € {0,1} denote the choice att = 1, where a; ; = 1 denotes early conversion.

Table[Al]in Appendix[A.2)summarizes the sequence of events. Two remarks highlight
how the environment departs from standard bank-run or currency-attack models. First, an
ex-ante adoption game and endogenous seller acceptance jointly link payments usage to

fragility: anticipated consumer adoption shifts sellers” multi-homing, which in turn alters

side utility benefit u could be interpreted as the benefit from avoiding frictions that arise from meeting a
consumer who has the "wrong" money on hand (or, equivalently, as a reduced dis-utility from mismatches).

14 As will become clear below, the introduction of passive coin holders is used to simplify the analysis
(without affecting the key insights) by ruling out the possibility of rationing at ¢ = 1, as in|Chen et al.|(2010).



matching probabilities and the exposure of coin holders at the conversion (or run) stage.
Second, heterogeneity across consumer groups matters because it creates group-specific
adoption and run incentives. A necessary condition for a positive stablecoin demand is
that the most stablecoin-oriented consumers find adoption privately optimal-i.e., their
expected savings from avoiding point-of-sale transaction costs exceed both the deposit

interest advantage and the expected loss from a potential devaluation of stablecoins.

3 Solving the Model

The model is solved by backward induction and unfolds in three stages: (i) in the first stage
of t = 0 sellers decide which monies to accept, (ii) in the second stage of ¢+ = 0 consumers
decide whether to adopt stablecoins, taking seller acceptance as given, and (iii) in the third
stage a stablecoin run game takes place at r = 1, triggered by noisy information about the
issuer’s solvency. I develop the three building blocks in turn.

First, holding seller acceptance and the consumer adoption rate N fixed, Section|3.1{ana-
lyzes the run game at r = 1, which follows the structure of a global game of regime change
with incomplete information about the fundamental of the stablecoin issuer (Morris and
Shin|(1998). The key innovation is the introduction of an endogenous payoff heterogeneity
across consumers, which is induced by the group-specific matching probabilities pg 4(N)
and ps,(N) and links individual adoption choices to fragility. Building on|Sakovics and
Steiner| (2012), I characterize the equilibrium run threshold 6* as a function of N.

The determinants of fragility, including the relationship between the probability of
runs threshold and stablecoin adoption, are studied in Section Thereafter, Section
analyzes the decisions made at t = 0. First, sellers choose whether to accept one or both
monies, taking expectations about future stablecoin adoption, N*, and group-specific
matching probabilities, pg,(N*) and ps,(N*), into account. Given the resulting seller
acceptance profile, consumers then choose whether to adopt stablecoins, forming rational
expectations about a future devaluation, i.e the run threshold, 6*. A perfect Bayesian
equilibrium of the full game consists of: seller acceptance decisions, consumer adoption
decisions, and a run threshold at = 1 that are mutually consistent.

3.1 Stablecoin Runs atr =1

This section analyzes the continuation equilibrium at ¢ = 1: active coin holders receive a

private signal about fundamentals and play a global-game style conversion game. First,
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I define the issuer’s solvency condition. Thereafter, I state the payoff matrix and discuss
how the group-specific expected payoff of an active coin holder depends on her conversion
decision, the decision of other coin holders, and the solvency of the issuer. Building on

these results, I formulate the r = 1 decision problem and solve the conversion game.

Solvency and critical conversion demand. The stablecoin issuer is insolvent whenever
she cannot redeem all outstanding stablecoins at par, that is when her available resources
fall short of the one-to-one redemption promise. Let A = [;a;; di/(kN) denote the fraction
of active coin holders who demand early conversion at r = 1, where a;; = 1 indicates
conversion and N is the aggregate adoption rate. Cash-flow solvency at t = 1 is ensured
by r > KA. Solvency at t = 2 requires that retained reserves cover remaining claims:
(r—KA)g >1—KA, 4)

r

Rearranging yields the critical conversion demand at ¢ = 1:

A0 =35

€ [0,1),V0 € [6,,6,), (5)

so that the issuer is insolvent iff A > A (0) To rule out rationing at r = 1, I impose the
parameter restriction r > k (see Assumption [I| below). This ensures that all active coin
holders can be paid at # = 1 whenever the issuer is solvent

Payoffs. The risk of insolvency only affects stablecoin holders, as bank deposits are
insured. When deciding whether to demand conversion of her stablecoins to bank deposits
att = 1, each active coin holder i compares the expected utility payoff from doing so with
the alternative to keep her coins. Table (1) shows the expected payoffs of coin holder i
associated with the two actions, which depend on the realized 6, on the aggregate action
A and on expected transaction costs governed by group-specific matching probabilities.

First, consider column 2 in Table[l|when the issuer is solvent, A < A (0), and can meet
her payment obligations in full to both active coin holders demanding conversion and to
the remaining active coin holders who keep their coins till # = 2, as well as to passive coin
holders. Thus, all coin holders demanding conversion receive 1 — 7; dollars worth of bank
deposits at t = 1, after accounting for the conversion cost. This allows them to purchase
1 — 7 units of the good if they are matched with a seller accepting deposits, and 1 — 71 — 7

15 Appendix characterizes the regions in which the issuer is fundamentally solvent or fundamentally
insolvent, as well as the intermediate range of fundamental realizations, 6 € (6, 6;,), in which solvency depends
on the realized conversion demand A, as usual in global games.

16This assumption simplifies the analysis Chen et al{(2010) without affecting the key insights.
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aggregate action A<A(9) A>A(6)

individual action issuer is solvent issuer is insolvent

Demand conversion, a;; =1 | 1—7—(1—ppg)% | 1 =71 — (1 —prg) T

Keep coins, a;; =0 1— (1= psg)n (r_'cf\_)# — (1= psg)™

Table 1: Expected ex-post payoffs in the stablecoin conversion game ats = 1 for 6 € (6, 6;).

units if they are matched with a seller only accepting stablecoins, which occurs with
probability 1 — pg,,. Taken together, the expected payoff is 1 — 7; — (1 — pp,, ) 7». Instead,
all active coin holders who keep their coins at ¢ = 1 receive one unit of the consumption
good if they are matched with a seller accepting stablecoins and 1 — 7, units if they are
matched with a seller accepting only deposits, which occurs with probability (1 — ps,,).

Next, consider column 3 when the issuer is insolvent, A > A (6). Now she is unable
to meet her payment obligations in full to the remaining active coin holders who keep
their coins till # = 2, as well as to passive coin holders, which both receive a share of the
remaining resources after bankruptcy costs. Conversely, all active coin holders demanding
conversion at t = 1 still receive the promised $1 per stablecoin and have the same utility
payoff as in the previous case. This is because the first inequality in (6) bounds x from
above such that r > k > K. Moreover, together with an additional bound on the bankruptcy
cos, ¥ < 0, it ensures that the payoffs of both the passive coin holders and the remaining
active coin holders are weakly positive, independent of A:

0—y— r— r— . -~ =
k<K= #r< po= ROV S 0if y < 0,YA > A(0),0 € [0,8].  (6)
b—rn
The two conditions are summarized in Assumption[I|below and simplify the analysis by
allowing to average over the group-specific terms when solving for the equilibrium by
applying the Belief Constraint of Sdkovics and Steiner| (2012), as shown below

Benefit from conversion. The optimal decision of coin holder i can be studied by analyz-
ing her relative payment preference, which is defined as Ap;(N) = pp4,(N) — ps,(N). Coin

7The implicit assumption is that the use of stablecoins as a means of payment at = 2 is independent of
the solvency of the issuer. This assumption could, for instance, be rationalized because a new issuer enters
the market or by the ability of the insolvent issuer to continue operating under resolution with a full backing
by cash. The main insights do not hinge on this assumption and are robust to a relaxation of the upper
bound on k, which generates a simplified payoff matrix and analysis of the run game as in|Rochet and Vives
(2004). Importantly, the analysis of the case with G > 2 is facilitated by the fact that the group-specific terms
are not contingent on A (Sakovics and Steiner|2012). See|Goldstein and Pauzner| (2005) for a bank run model
with payoffs that do not satisfy global strategic complementarities, as it is the case when k = 1.
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holder i’s differential payoff, or benefit, from demanding conversion at ¢ = 1, instead of
keeping her coins can be written as A ;(A;0) = E[u;(A,a1,; = 1;0)] —E[u;(A,a1; = 0;0)]:

Al,i(A; 9) =

Api(N)’L'z—Tl ifA SA\(Q) @)
A

14 Api(N)Ty — 1 — U=RAOV 56 4 5 A().

Observe that A;; is weakly decreasing in 6. Moreover, A;; is lower for coin holders
belonging to a group with a higher probability to be matched with a seller accepting
stablecoins, which, as will become clear below, implies a reduced flightiness.

Letg e {1,...,G} be the marginal group of coin holders, i.e. the group of consumers with
the lowest benefit from holding stablecoins. If A < A (0), then A;; < 0,Vg; > g. Otherwise,
consumer i belonging to group g; € {g,...,G} would not have adopted stablecoins at t = 0.
Conversely, for A > A(6) there is a global strategic complementarity in actions; a higher
aggregate conversion demand A strictly increases the incentives to demand conversion.
Thus, A ; increases in A and reaches its maximum value for A = 1, with Ay ;(1;0) > 0,V6 €
(6¢,61,),gi € {8, ....G} under the sufficient condition that:

v>y=(1-x)(11—Aps(N)12). (8)

Formally, the lower bound y merely ensures that even group G strictly prefers to convert
att = 1 when they expect all other active coin holders to do the same (i.e., A = 1) and the
fundamental realization falls below the solvency threshold 6),. As illustrated in Figure
in the Appendix, the differential benefit A, ; is increasing in the aggregate conversion rate

A: it is negative when few convert, and becomes positive as conversion pressure builds.

Equilibrium of the Continuation Game at# = 1. Next, I derive the continuation equi-
librium of the incomplete information game, where coin holders receive a noisy private
signal at r = 1 that is correlated with the amount of resources available to the issuer at
t = 2. Building on the previous results, Assumption [I| summarizes the key parameter

conditions derived above, which are used for the subsequent analysis.

Assumption 1. Let k <K < rand y € (y,9).

The upper bound on «k simplifies the payoff structure and ensures global strategic
complementarity in actions (this assumption could be relaxed). The lower bound on y
focuses attention on the plausible case where even crypto enthusiasts have a benefit from
demanding conversion if they know that everybody else wants to convertand 6 < 6, while
the upper bound on y avoids negative payoffs (this assumption could be relaxed). Note
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that the admissible range for bankruptcy costs, ¥ € (v, 8), is non-empty as long as the
relative attractiveness of stablecoins is not excessively high for the most crypto-enthusiastic
users (group G), and the conversion cost 7 is not prohibitively large.

I use the global games approach to analyze the conversion game. Appendix Section
derives coin holders’ posterior belief conditional on their private signal x; and group
gi- Appendix Section then establishes an upper and lower dominance region of very
favorable and unfavorable private signal realizations, respectively, such that the actions of
coin holders observing a signal that falls in these regions do not depend on the decisions
of others. For the case with multiple groups of coin holders, i.e. g < G, the existence
of unique equilibrium in threshold strategies is established by adapting the translation
argument of Frankel et al.| (2003), which has also been used by (Garcia and Panetti (2022)
to study a Diamond-Dybvig bank run model with wealth heterogeneity.

After establishing existence and uniqueness, I characterize in Proposition[Ija monotone
equilibrium of the continuation game by application of the Belief Constraint of Sakovics
and Steiner| (2012). The equilibrium is fully determined by a critical mass condition and
by one indifference conditions for each coin holder group, which are derived in Appendix
and respectively, and used to back out the equilibrium run threshold 6*.

Proposition 1. Given Assumption|l}, take a positive level of stablecoin adoption N > 0. Then there
exists a unique monotone equilibrium of the conversion game characterized by threshold strategies
where active stablecoin holders in groups g € {g, .., G} demand conversion if and only if they receive
a private signal that is below their group-specific signal threshold, i.e. for x; < xg,, and where the
issuer faces a run at t = 1 for all 6 < 6*, with 6* € (1, 6),) given by:

. 1 r—xA)0*/r—w
I(6";N) = Ap(N)Tz—Tl-I—ﬁe*l)r (1_ ( IZKA )dA:O )
k(0% —r)

emglPag(N) = psgWN) + L g, m N) — psg(N
AP(N) = 8 alPpg(N) = psg(N)] Zégﬂ g[PB.g(N) = psg( )]’ (10
Hgmg+ Y g1 Mg

where g solves N = pgmg + Znggﬂ my, with pg € (0,1].

Proof. See Appendix Section|A.10.1

The Belief Constraint states that the Laplacian Property holds on average across the
different groups of consumers adopting stablecoins, meaning that coin holders” posterior
distribution of A is on average uniform over [0, 1]. This property allows to derive a tractable

solution where the equilibrium fundamental threshold is determined by averaging over

14



the indifference conditions (weighted by their group shares), as in Equation @) As a
result, for a given N, 6* is a convenient function of the weighted average of group-specific
matching probabilities, Ap(N) = E[Ap,(N) | adopters at N|, a summary statistic for the

average relative payment preference for deposits in the population of adopters.

3.2 Determinants of Fragility

The r = 1 continuation equilibrium described in Equation (9) can be characterized by
application of the implicit function theorem (IFT). This allows to uncover the determinants

of fragility. The results are summarized in Proposition

Proposition 2. The probability of stablecoin runs, Prob{8 < 0*}, derived in Proposition[I|depends
on the model parameters as shown in Table

Increase in Probability of a run
Bankruptcy cost, v
Fraction of active coin holders, k¥
Liquidation value, r
Conversion cost, 7|
Average relative preference for deposits payments, Ap

|| |

Table 2: Comparative statics

Proof. See Appendix Section|A.10.2

The first three comparative static results in Proposition [2| are consistent with well-
known findings in the banking literature and give confidence that the proposed model for
stablecoins is sensible. Intuitively, an increase in bankruptcy costs and a decrease in the
liquidation value r make the issuer less resilient. Consequently, the issuer faces a higher
probability of runs. Similarly, a higher share of active coin holders is destabilizing.

The fourth result states that higher conversion costs have a stabilizing effect. This is
because they reduce the incentives to demand conversion. Due to the importance of
congestion effects in crypto markets, the stabilizing role of transaction costs appears to be

a relevant feature, as a large volume of transactions in a short time window can trigger

18Critically, the application of the Belief Constraint requires that the group-specific terms in the indiffer-
ence condition are not a function of the aggregate action. This is because the Laplacian property does not
hold for the threshold type of a group, but it only holds when averaging across groups. However, the main
results can be generalized in a less tractable model with k¥ = 1 and two groups of coin holders, leading to a
dependence of ¢, and fB; on A, and when transaction costs are proportional to the amounts converted.
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significant increases in transaction fees. To speak to this phenomenon, I endogenize the
conversion cost 77 in Section and show that its stabilizing effect is strengthenedm

The fifth comparative static result in Table 2 highlights a novel composition effect, which
is the main focus of this section. I find that the run probability is increasing in the average
induced relative payment preference for deposits among the population of coin holders,
as captured by the term Ap, defined in (I0). This term reflects how frequently users expect
to encounter sellers who accept deposits versus stablecoins. Formally, when the average
matching probability with a seller accepting stablecoins, ps,(N), is high relative to the one
with a seller accepting deposits, pg,(N), then stablecoins have a stronger transactional
value, meaning that Ap is smaller, which makes their holders less inclined to redeem early.

Building on the composition effect via changes in Ap, I can analyze how adoption
and other drivers of coin holder heterogeneity shape fragility. Figure 2| illustrates the
causal chains for the stabilizing effect of a higher seller acceptance of stablecoins and for
the destabilizing effect of a higher adoption rate for fixed seller acceptance. These effects
provide the foundation for Sectiond, which studies how policy interventions can influence
the adoption—fragility nexus by shaping seller acceptance and coin holder composition.

Destabilizing Effect (Corollary

( . 7
For a given seller acceptance

profile B(N),S(N); consider
J L a higher adoption rate, N 1 )
The probability that the matched seller )
accepts stablecoins goes up, ps, 1

Stabilizing Effect (Corollary [4)

(For fixed adoption rate N; consider a higher\
seller acceptance of stablecoins, S(N) 1

The average adopter becomes less en-
J L thusiastic about stablecoins, Ap 1

The average adopter becomes more
enthusiastic about stablecoins, Ap |

\

{ The run threshold goes down, }

} ( The run threshold goes up,
0* 1 (runs more likely)

0* | (runs less likely)

Figure 2: Two causal chains linking adoption, seller acceptance, and fragility. The formal
results for the two effects are in Appendix Section[A.10.3]as corollaries to Proposition 2]

In practice, stablecoin use cases vary significantly in terms of the potential benefits

they offer to holders. This has important implications for the fragility of a stablecoin

9T document such an event in Figure|A2|in the Appendix for the period around the devaluation of USD
Terra in May 2022, when the transaction fees for on-chain transactions on the Ethereum network (which was
the dominant network used by USD Terra) shot up more than four-fold, which may have helped to reduce
outflows from Tether, counteracting contagion effects across stablecoins.
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issuer. For example, retail users may hold stablecoins primarily to explore the broader
crypto ecosystem or to leverage the technology for low-cost cross-border remittances.
Their relative preference for stablecoins likely differs from that of actors seeking to evade
sanctions or to facilitate payments for illicit activities, who belong to a group of crypto
enthusiast (i.e. a group with a high level of g). Through the lens of the model, an increase
in the use for sanctions evasion could, e.g., be captured by a relative increase in the mass
of consumers who are crypto enthusiasts, i.e. a higher mg, or by higher seller acceptance
of stablecoins, i.e. a higher S(N). Such changes manifest as a decrease in Ap, triggering a
stabilizing effect which lowers 6* as illustrated in the left panel of Figure

Conversely, the same composition effect also has important implications for the rela-
tionship between adoption and fragility. As adoption widens, it may draw in consumers
from groups with weaker transactional motives for holding stablecoins, that is more con-
sumers from the marginal group of coin holders g or even consumers from groups with
a lower g. Consequently, the average flightiness of the coin holder base increases, leading
to a destabilizing compositional effect, as illustrated in the right panel of Figure 2l This
destabilizing effect establishes a novel feedback channel of endogenous fragility for fixed
seller acceptance decisions: the widening of stablecoin adoption can destabilize the sys-
tem when it alters the composition of users in a way that reduces the transactional value of
stablecoin holdings@ From a practical perspective this effect is particularly salient when
the adoption of stablecoins spreads beyond the core of crypto-enthusiastic early adopters,

e.g. for new use cases or by user segments that differ markedly from the initial user base.

3.3 Stablecoin Adoption Game and Seller Decisions at7 =0

Moving to t = 0, I start with the analysis of the second stage where consumers de-
cide whether to adopt stablecoins, before moving to the first stage where sellers de-
cide which monies to accept. The expected differential payoff, Ag;(A;0) = Eu;i(ao; =
1;N,0%(N))] —Elui(aop; = 0;N,0*(N))], of consumer i in group g; from adopting stablecoins
instead of bank deposits at r = 0 if she expects an adoption rate N, matching probabilities
PB.g;(N),psq (N) and believes that all active coin holders behave optimally at 7 = 1, where

2With endogenous seller acceptance decisions there is, however, a countervailing effect in that higher
expected stablecoin adoption by consumers is associated with higher benefits for deposit-native type-B
sellers to also accept stabelcoins, which leads to an decrease in Ap(N). I will revisit this aspect in Section [4]
where adoption and fragility are analyzed jointly in the face of changes in seller acceptance.
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x;;, = 0%(N) solves Equation @, can be written as:
N (r—x)0/r—wy de
Npi(N) = 1—71—(1—pByg, 1— —(1— , —_—
i) = [ (x(0-m= (= pnge)+ (-0 (T (1 pn) ) 57
0 do
+ 9*(1—(1—Ps,g,-)fz)§_9—(1+"D—(1—PB,g,-)Tz),(11)

where the dependency of the matching probabilities on N is dropped for brevity.

Equation builds on the payoffs from Table[I|and the results from Proposition[l} The
risk of insolvency only affects stablecoins, as deposits are insured. For vanishing private
signal noise, there is zero probability mass on fundamental realizations that correspond
to a partial run, meaning that A = 1 for 6 < 6* and A = 0 for 6 > 6*. Then, for a given N,
pBg(N), pse(N) and 6*(N), the optimal adoption decision of consumer i is:

1 if A()J(N) >0
ap(N) =1 €[0,1] if Ag;(N)=0 (12)
0 otherwise.

Next, consider the problem of a seller who accepts one or both monies, taking expec-
tations about future stablecoin adoption by consumers, N*, and group-specific matching
probabilities, pg,(N*) and ps¢(N*), into account. Let a? € {0,1} (a*]g. € {0,1}) denote the
choice of deposit-native (stablecoins-native) seller j, where a? =1 (a§ = 1) if she decides

to multi-home. The respective problems of type-B and type-S sellers are:

. S\ AE L S S
aggﬁ)ﬁ}((l—af)u(l—N )+a(u—87)) and a;él{é:)?;}((l—aj)uN +aj(u—3j)>.

Solving for the optimal acceptance decisions gives:

1 ifuN* > &8 1 ifu(l1-N*)> 8%
CZB*(N*) — — 7J aS*(N*) — u( ) =Yj (13)
0 otherwise 0 otherwise,
which yields f2(N*) and f5(N*) in Equations (I) and ().
Based on the description of the seller and consumer problems at t = 1 and of the
problem of coin holders at ¢ = 1, I can now define a Perfect Bayesian Equilibrium (PBE).

Definition 1. Perfect Bayesian Equilibrium A (pure-strategy) PBE consists of: (i) seller

acceptance decisions {a*,a5* : j € [0,1]}, (ii) consumer adoption decisions {ag . : i € [0,11}, (iii)

18



an adoption rate N*, (iv) conversion strategies {aj , (x¢;;N) : i € [0,1]}, and (v) a system of beliefs
over future adoption N, matching probabilities, and fundamentals, such that:

(i) Each seller’s acceptance decisions a?* and af.* are optimal at t = 0, given beliefs about N*.
(ii) Each consumer’s adoption decision ag; is optimal at t = 0 as in (12), given N*, pp g, (N*)
and ps.q,(N*), where Mg g,(N*) uses the matching probabilities in (iii).
(iii) The adoption rate is consistent with individual decisions, N* = [y ag;, di, and the matching
probabilities pg 4(N*), ps,.(N*) in (3) are consistent with seller decisio,nsfor allg e {1,...,G}.
(iv) Active coin holders act optimally at t = 1 and the run threshold 6* (N*) solves (9).
(v) Beliefs are Bayes-consistent on- and off-path.
(a) Given N* and the acceptance shares implied by (i), beliefs assign ps o(N*) and pg o(N*)
as in (iii) forall g € {1,...,G}.
(b) If an off-path adoption mass N # N* is observed, beliefs about matching probabilities
ps.e(N) and pp ¢(N) update via the same mappings f8(N) and £5(N) used in (iii).

Conditions (i)—(iv) ensure sequential rationality of acceptance, adoption, and conversion
at + € {0,1} given beliefs over (future) adoption N and matching probabilities, while
condition (v) pins down Bayes-consistent beliefs over adoption and matching probabilities

on and off the equilibrium path.
I proceed by first discussing the beneficial role of stablecoins in Section to highlight

the transaction role of money and the advantage of having the "right" money on hand at
t = 2. To do so, it is instructive to consider a version of the model where stablecoins
are riskless. Thereafter, Section offers a joint analysis of stablecoin adoption and
acceptance for the model with stablecoin runs and studies the interaction between fragility
and the optimal stablecoin adoption and acceptance decisions.

3.3.1 Transaction Costs and the Beneficial Transaction Role of Stablecoins

Before turning to the joint equilibrium with adoption and runs, it is instructive to con-
sider two knife-edge benchmarks that clarify the transaction-cost channel and its limits,

especially the role of 7,, and the role of safe versus risky backing of stablecoins.

Case A (No Frictions). If 7, \ Oorif all sellers multi-home, i.e. % = =1, theadvantage
from holding the "right" money on hand at ¢ = 2 vanishes. Bank deposits dominate and
the unique equilibrium is N* = 0. Stablecoins have no transactional value, either because

consumers can always convert for free or because all sellers accept deposits.
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Case B (Safe Stablecoins). If liquidation risk disappears (r,8 " 1), stablecoins become
riskless. Then consumers with a sufficiently high probability of meeting a stablecoin-
accepting seller adopt in order to economize on 7, while others hold deposits. This

captures an idealized benchmark of tightly regulated, fully backed stablecoins.

Proposition 3. (Safe stablecoins) Let r — 0, 0 — 1 and 1/ 7 > ps.1(0) — pp.1(0). Moreover,
suppose that type-S sellers rarely accept deposits, f5 ~ 0. Then a consumer i adopts stablecoins iff:

P

— < pS,gi - pB,g,-, (14)
(%)

so that equilibrium adoption is positive if and only if Inequality holds when evaluated at

gi = G. In this case there exists a unique marginal group of stablecoin adopters g* € {1,..,G}.

Proof. See Appendix Section|A.10.4

Proposition [3|delivers a clear "payments-only" benchmark: adoption requires both a posi-
tive transaction cost 7, and the presence of sufficiently crypto-oriented consumers, i.e. the
transactions benefit of stablecoins must be sufficient such that at least consumers in group
G must find it optimal to adopt. Runs are absent, and fragility arises only if liquidation
risk is introduced. This benchmark best captures an "ideal world" where stablecoins are
tightly regulated, well capitalized and backed by central bank reserves, while offering a
technology-enabled access to certain use cases or benefits for consumers that are otherwise
unavailable@ Notably an equilibrium with stablecoin adoption only requires one group
of coin holders, i.e. G = 1. Furthermore, observe that optimal continuation at = 1 entails
keeping coins, so 7; is never paid and does not affect the adoption cutoft.

Moving away from this special case with safe stablecoins, the next section focuses on
the practically more relevant version of the model, where the issuer is susceptible to runs
due to her risky and illiquid investment. Moreover, I endogenous seller acceptance.

3.3.2 Equilibrium of Acceptance, Adoption and Runs

Adoption with Runs Under Fixed Acceptance. I first re-introduce fundamental risk
but seller acceptance is initially held fixed, i.e. (a?,a}? )jelo,1) and the resulting acceptance
profiles (2, f5) are taken as given. Let {pg ., ps}¢ be the matching probabilities implied

21In addition, the benchmark will serve as a basis for discussing in Section regulated stablecoin issuers
(U.S. GENIUS Act) or e-money providers (European Markets in Crypto-Assets (MiCA)), narrow banks and
a hybrid CBDC through the lens of the model.
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by this exogenous acceptance profile. Adoption is monotone in g: there exists a (be-
lief-dependent) marginal group g(N) € {1,...,G} such that consumers adopt iff g; > g(N).
Lemma |I|describes how optimal adoption varies with beliefs about fragility.

Lemma 1. (Fragility & Adoption) Fix sellers’ acceptance (fB, f5) so that pp, and ps, are
constant in the adoption rate N. Under the conditions of Proposition |1} for any belief 6" € [0,1]
about the probability of stablecoin runs, the adoption rate N is weakly decreasing in 6’

Recall from Corollary 5/ and from the right panel of that Figure [2| that, for fixed seller
acceptance, higher adoption brings in more deposit-oriented users, which raises Ap(N),
and therefore increases the run threshold 6*(N). Combining Corollary [5| with Lemma
yields the feedback between adoption and fragility. In equilibrium, beliefs about 6* at
t =0 and the adoption outcome N* must be consistent with the 8*(N*) solving the r = 1

conversion game for a given composition of stablecoin holders at N*, i.e. the implied Ap.

Two-group Simplification. To sharpen intuition, I now restrict attention to the case with
G = 2 and relegate the general case to the Online Appendix. Group 1 (deposit-oriented)
has mass m; and group 2 (stablecoin-oriented) has mass my, with m; +my = 1. Adoption is
monotone in type and can occur in blocks or via partial adoption of the marginal group.
If group 1 is indifferent at belief N, a unique fraction y; € [0, 1) adopts, pinned down by:

A (N,G*(N)) =0 with N=my+ um.

Because A and Ag; are weakly decreasing in N under fixed acceptance (strict whenever
the adopter set expands to include any mass of group 1 through the composition channel),
the indifference condition delivers a unique y; whenever group 1 is marginal. Let I'.(N)

denote the aggregate adoption best-response at belief N. In the two—group case:
T(N) € {0, my, my+ pyimy, 1},

where the middle value appears only when group 1 is marginal. Off that point, the best-
response is block-adoption: 0, my, or 1. Observe that I'.(1) = 1 iff Ag; (1,6*(1)) > 0 and
I.(0) =0iff Ag» (0,6%(0)) < 0. Proposition 4 summarizes.

Proposition 4. (Unique Adoption Equilibrium under Fixed Acceptance) Let G = 2. With
fixed acceptance, N =T'¢(N) has a unigue solution N* € {0, my, my + ymy, 1}, where the interme-
diate value my + pymy arises only if group 1 is marginal (in which case W, is uniquely determined
by the indifference condition). Corner cases N* € {0,1} occur when no group (all groups) adopt.
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The key simplification in the two—group case is that I'.(N) reduces to a step-shaped
correspondence with one vertical segment. This makes the discussion of the structure and
characterization of the joint equilibrium with endogenous seller acceptance, consumer

adoption and runs more transparent (see the Online Appendix for the general case).

Adoption with Runs Under Endogenous Seller Acceptance. Next, I allow for endoge-
nous seller acceptance by type-S sellers who may decide to multi-home based on their
belief about N, i.e. f5(N) is now endogenous and decreasing in N as described in Equation
[@), while f8 is kept fixed (e.g., because 5" o, which makes the type-B seller margin
inelastic to changes in the sellers’ belief about N).

The main insight is that endogenous seller acceptance gives rise to a stabilizing network
effect: a higher expected N decreases type-S seller acceptance of bank deposits, which
reduces the fragility of the stablecoin issuer by lowering pg ,(N), while ps,(N) stays fixed.
Importantly, this effect can locally overturn the destabilizing composition effect from Corollary
meaning that the run threshold decreases in N, thereby reshaping the aggregate adoption
best-response I'.(N). This happens precisely when dAp/dN < 0. Lemma 2| summarizes.

Lemma 2. (Adoption & Fragility Revisited) Let G = 2 and 5" — o0 s0 that 1B is fixed while
f5(N) is decreasing in N. A broader adoption of stablecoins is stabilizing if the destabilizing
composition effect from new adopters from group 1 is dominated by positive network effects, i.e.:

d6* _ dAp
<0 — <0,
dN if dN
where:
>0; destabilizing composition effect ~ <0; stabilizing acceptance/network effect (d fS(N)/dN<0)
dAp dw, N dAp; dA p;
2P _ Miap A :
dN ay B8 YN TN

where wg(N) is the share of adopters in group g and Apg = pp o(N) — pse(N) so that:

do* <0, if N € [0,m;]

= ‘ )
dN <0, if N € (my,1) and < %(Am—Apz)Jr(%(1—w1)+%(1—w2))% ) <0.

Figure (3| illustrates the implications of Lemma [2| for the aggregate adoption best-
response. Panel (a) fixes acceptance. The aggregate adoption best-response is weakly
decreasing and has a unique intersection with the 45° line. Instead, with endogenous
seller acceptance the best-response can bend upward if d6*/dN < 0, creating multiple

intersections. The depiction in Panel (b) illustrates the case with a strong seller acceptance

22



effect such that the best-response bends upwards globally. Proposition 5|states the result.

(a) Fixed seller acceptance (b) Endogenous type-S acceptance
Fe(N) Le(N)
1 P 14

N*"=my + uim

*

Ny =m

o [ s o

N
Ny

1> N (belief) 1> N (belief)

my my

Figure 3: This figure shows the aggregate adoption best-response correspondence, I'.(N),
and the 45° line for the two-group case. Panel (a): step profile with a top plateau I'.=1 on
[0,N*), a middle plateau I'.=[N*, 1], and the equilibrium at N* = my + pym; on the vertical
wheree group 1 is marginal. Panel (b): upward sloping S-shaped best-response.

Proposition 5. (Joint Equilibrium) Let G = 2 and 57 = oo s0 that 1% is fixed while f5(N)
is decreasing in N. There exists at least one adoption equilibrium N* € [0,1]. If the seller
acceptance/network effect dominates the destabilizing composition effect so that d0* /dN < 0 for
some interval of adoption rates, then T'.(N) can become S-shaped, yielding multiple fixed points.
Otherwise, the equilibrium remains unique.

The key take away from the analysis of the two-group case is that with fixed acceptance
there is a unique adoption equilibrium pinned down by the marginal group of adopters.
With endogenous seller acceptance the relative strength of the destabilizing composition
effectis key for equilibrium uniqueness. If overturned by strong seller acceptance /network
effects, equilibrium multiplicity emerges. The multi-group version follows the same logic
and the proof uses Kakutani’s fixed-point theorem to establish existence of a Perfect
Bayesian Equilibrium (see Online Appendix).

From a policy perspective, the possible emergence of multiple equilibria indexed by
different beliefs about stablecoin adoption can be a concern, as sudden shifts in adoption
may have significant stability implications that may reverberate in financial markets, due
to the role of stablecoins as a link between the crypto and traditional financial markets
(Barthelemy et al.2023; Ahmed and Aldasoro|2025). Beyond concerns related to shifts in

adoption, the model offers a series of deeper policy implications that I discuss next.
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4 Policy Analysis

Section addresses regulatory concerns regarding a widespread, rapid, and from a
consumer welfare perspective "excessive" adoption of stablecoins. Specifically, it compares
a consumer welfare-centric socially optimal level of stablecoin adoption to the equilibrium
level of adoption resulting from privately optimal consumer choices. Thereafter, Section
speaks to regulatory concerns about moral hazard and the disclosure of risks through
the lens of a modified model where the issuer can select the portfolio risk.

4.1 Efficiency Analysis: Excessive Adoption

I study a constrained planner who maximizes consumer welfare by choosing the adoption
mass N € [0,1] at# = 0. Section analyzes the benchmark with fixed seller acceptance
to isolate an uninternalized destabilizing run externality, Section[4.1.2)then allows endogenous
type-S acceptance and analyzes an uninternalized erosion of the value of bank deposits through

network effects. Lastly, Section discusses policies to implement the efficient allocation.

Planner’s problem. Adopting a consumer welfare criterion, the efficiency analysis builds
on a suitable constrained planner benchmark with fixed seller acceptance where a planner
maximizes consumer welfare, W (N), by choosing the adoption mass N € [0, 1] at¢ = 0 but
must (i) take the r = 1 conversion game (global games selection, panic runs) as given, and
(ii) respect sellers’ t = 0 acceptance best responses, which depend on beliefs about N @

4.1.1 Uninternalized Destabilizing Run Externality

The destabilizing run externality builds on the link between adoption and fragility estab-
lished in Corollary Formally, let N* denote the market equilibrium and N5 the solution
to the constrained planner problem. To cleanly isolate the run externality, I first study
the model with fixed seller acceptance. Adoption is classified as "excessive" if N* > N5P.
Proposition [6|summarizes the first efficiency result.

Proposition 6. (Excessive Adoption: Run Externality) Suppose the conditions of Proposition
[ hold so that 6*(N) is uniquely defined for each N. Then, for an interior adoption rate with more

22The focus on consumer welfare is justified under a small-seller-surplus calibration (low per-sale margin
u and small acceptance costs), such that seller welfare is plausibly second-order relative to consumer
welfare, while equilibrium acceptance and the run probability are unaffected. The analysis is also consistent
with regulatory practice, which typically focuses on consumer outcomes and risks to the financial system.
Moreover, disregarding profits of the stablecoin issuer can be justified because rents earned by banks are
not explicitly modelled. Therefore, treating both bank surplus and issuer surplus as outside the welfare
objective is analytically consistent and motivated by actual regulatory policy.

24



than one group of coin holders and fixed seller acceptance (SB,SS — o), the equilibrium level of

adoption is excessive relative to the constrained efficient level, N* > N°F.

Proof. See Appendix Section|A.10.5

Intuitively, an inefficiently high level of stablecoin adoption can arise because the
marginal adopter of stablecoins at t = 0 does not take into account that she poses a
negative externality on other coin holders by increasing the probability of a stablecoin
run due to the destabilizing composition effect, i.e. dProb{6 < 6*}/dN > 0 (Corollary
5), which reduces everyone’s differential payoff from adopting stablecoins and pushes N*
above N5F. Because the distribution of groups is discrete, it takes more than one group of
adopters for this composition effect to emerge. Without fixed seller acceptance the planner
also takes matching effects into account, an aspect that I discuss below in Section

Regulatory perspective. Settings where a dominant US dollar stablecoin becomes the de-
facto instrument for cross-border or offshore transactions suggest to be especially exposed
to the "excessive adoption" mechanism established in this paper. To make an example,
consider large stablecoin (e.g., Tether) that scales into remittances. This can generate
sizable, transitory "parked" balances held by households who plan to convert in the near
future and do so immediately after receiving information about potential weaknesses of
the balance sheet of the stablecoin issuer. Resultingly, negative issuer news translates into
"faster” redemptions among late adopters than among early "crypto-native" users who
hold stablecoins mainly as a conduit to access the crypto universe—an empirically testable
implication (see Section [f)-and suffer from this negative externality.

Relation to the literature. On a conceptual level, the mechanism developed in this paper
contrasts with classical "run externalities," where inefficiency arises from strategic com-
plementarities among ex-ante identical agents—such as in Diamond and Dybvig| (1983),
Rochet and Vives (2004), and Goldstein and Pauzner| (2005)-or through pecuniary price
channels in fire-sale and macro-prudential models (Lorenzoni 2008; Davila and Korinek
2017} [Farhi and Tirole 2012). Instead, here inefficiency is driven by a compositional exter-
nality: as adoption widens, the marginal adopter’s characteristics alter aggregate fragility
0*(N), even when individual decisions are strategic substitutes at the adoption stage.

4.1.2 Uninternalized Erosion of the Transaction Value of Bank Deposits

Building on Section I next study the effect of an uninternalized erosion of the

transaction value of bank deposits. To isolate this effect, I introduce endogenouns seller
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acceptance by stablecoin-native sellers. Proposition [/] summarizes the efficiency result.
Let N* denote the decentralized adoption level under endogenous type-S acceptance.

Proposition 7. (Excessive Adoption: Uninternalized Erosion of Deposits) Under the con-
ditions of Proposition @ let type-B acceptance be fixed (SB — o) and type-S acceptance respond to
adoption so that dfS/dN < 0. Then the equilibrium level of adoption is excessive relative to the
constrained efficient level, N* > NP, under the sufficient condition that dAp/dN > 0. Moreover,
the magnitude of the inefficiency increases if the erosion of deposits is introduced alongside the

uninternalized run externality.

Proof. See Appendix Section|A.10.5

Intuitively, a higher expected level of stablecoin adoption is associated with fewer type-
S sellers deciding to also accept deposits as payment. This effect is reminiscent of negative
cross-side network effect studied in the two-sided markets literature (Rochet and Tirole
2003). It is in this sense that the transaction value of deposits is eroded, which is to the
detriment of consumers belonging to groups g € {1,...,g — 1} who keep their bank deposits
and now face higher transaction costs. Given that stablecoin adopters do not take into
account that they pose a negative externality to non-adopters. Therefore, the magnitude
of the inefficiency increases (see also Corollary [I|below) provided dAp/dN > 0, meaning
that the composition term dominates the acceptance term in Lemma [2, which ensures

uniqueness of the decentralized equilibrium.

Regulatory perspective. Facebook’s 2019 announcement to launch a global digital cur-
rency (Libra) was a wake-up call for central banks and financial regulators. As discussed in
the introduction, policy makers were primarily concerned that a rapid, large-scale stable-
coin adoption could reshape the payments landscape and erode banks’ retail deposit base,
reducing both the funding stability of banks and the transactional value of deposits. In
the present framework, such a reduction in deposits’ transactional value for non-adopters
amplifies the wedge between decentralized and planner allocations, strengthening the
rationale for a policy intervention (see Section 4.1.3). Empirically, a decline in deposit
acceptance by stablecoin-native sellers—such as crypto-affine merchants offering digital

goods—-would be associated with a more pronounced excessive adoption.

Relation to the literature. Notably, the uninternalized erosion of bank deposits an-
alyzed in this paper differs conceptually from the financial disintermediation channel
emphasized in the existing literature (Andolfatto|2021a; Chiu et al.[2023). The disinter-
mediation concern centers on the reallocation of savings from banks to alternative digital

intermediaries—such as stablecoin issuers or the central bank under a retail CBDC—-which
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may impair banks’ funding stability and ability to fund loans to the real economy. In
contrast, the mechanism in this paper operates through the transactional rather than the
intermediation role of bank deposits. In a richer model, the erosion of deposits’ trans-
actional role could interact with the traditional disintermediation channel studied in the
literature. In the benchmark model of Brunnermeier and Niepelt (2019), such funding
shifts away from banks can in principle be neutralized through appropriate central bank
intermediation, yet the welfare loss identified in my paper would persist because it arises

from a deterioration in deposits’ transaction role rather than from impaired credit creation.

4.1.3 Policy Implications

From a policy perspective, one can distinguish between policies that take seller acceptance
as given and focus on addressing the concern of excessive stablecoin adoption, and policies
that try to establish interoperability of payment systems. Through the lens of the model,
the latter set of policies can clearly help to deal with the uninternalized erosion of bank
deposits. E.g. by regulating sellers to accept both monies, a regulator can implement
multi-homing so that p, = ps,, = 1 and the inefficiencies identified in Propositions|6|and
[7] vanish (see Case A in Section [3.3.1). In fact, multi-homing by all sellers makes bank
deposits consumers’ preferred medium of exchange due to the superior return. In practice,
a limited regulatory reach, high seller acceptance costs, or diverging seller preferences and
other attributes may be obstacles to such a regulatory intervention maximixing consumer

welfare. Therefore, alternative policies focusing on consumer adoption remain relevant.

Considering the perhaps more interesting case of a constrained planner that cannot
directly affect seller acceptance profiles, the inefficiencies created by the externalities

discussed in Sections4.1.1jand |4.1.2|could be corrected with Pigouvian-type interventions

that internalize the social cost of excessive adoption. Specifically, I consider a planner (or
regulator) who can impose an adoption levy users (or, equivalently, a subsidy for deposits)
that aligns private and social incentives. Corollary [l|summarizes the key insights.

Corollary 1. (Pigouvian Taxes) Consider a planner that sets an adoption levy but cannot directly
set seller acceptance. Let NSF denote the constrained—efficient adoption level that maximizes WE (N).
(i) Fixed acceptance. Under the conditions of Proposition[6] the optimal levy is:

owe do*
“ 307 aN NN

*

> 0. (15)

(ii) Endogenous type-S acceptance (inelastic type-B). Under the conditions of Proposition
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[7] the optimal levy is:

- oW do* G <8WC dppg

- 7 -0 > 1", 16
l 00* dN ‘N:NSP 8=8 8p3,g dN )‘N_NSP l ( )

Proof. See Appendix Section|A.10.6

The second result in Corollaryuses that oOW¢ /9 pBg > 0and dpp,/dN < 0on the interior,
while dps . /dN ~ 0 when the type-B margin is inelastic.

Intuitively, when seller acceptance is fixed, the optimal adoption levy is proportional
to the marginal effect of adoption on fragility, internalizing the run externality. This is
because the derivative of consumer welfare with respect to the run threshold is negative
in interior regions, dW¢/90 < 0, while d0*/dN > 0. This adoption levy parallels the
macroprudential taxes proposed by Davila and Korinek| (2017), but here the externality
operates through the composition of adopters rather than through asset prices or leverage.

Instead, with endogenous type-S acceptance, the optimal adoption levy corrects both
the run externality—-whereby wider adoption raises fragility—and network effects—whereby
declining deposit acceptance reduces the transactional value of deposits. In equilibrium,
the levy thus includes a fragility component and a deposit-erosion component, each
positive when adoption both destabilizes the issuer and undermines deposits” payment
role. Notably, the welfare wedge is larger than with fixed seller acceptance under the
maintained assumption that dAp/dN > 0, which ensures uniqueness.

As the purpose of this section is to isolate the externalities in Propositions [6] and [7
type-B seller acceptance is kept fixed throughout. Relaxing this assumption adds another
layer of network effects that can also counter the destabilizing composition effect (Lemma
), but does not directly affect the erosion of the transaction value of bank deposits.

4.2 Disclosure and Moral Hazard

Recent regulatory initiatives, such as the 2025 U.S. GENIUS Act and the EU Digital Finance
Package (EU|2022), emphasize enhanced transparency and stricter rules for the composi-
tion of stablecoin reserves (monthly public disclosures, restrictions to high-quality liquid

assets, and—-to some extend—capital requirements). To speak to this debate, I modify the
baseline model from Sections by introducing a classical risk-shifting problem.

Modified setup. The issuer chooses a portfolio risk level x € {x;,xy}, where x; > 0 is
the safer choice and xy = 0 the riskier benchmark nesting the baseline model. Now, 6 ~
U[8(x),0(x)] with 8(x) =x& R+ (1 —x&)8 and 0(x) = x& R + (1 —x&;)0, with sensitivity
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parameter & € (0,1] and R = (6 + 8)/2, so that xy is a mean-preserving spread of x;,
because d(x)/dx = —d0(x)/dx > 0. In the event of a run, the liquidation value is #(x) =
xEyrp + (1 —x&)r, with r, € (r,1) and &, € (0,1], so that #(x.) > F(xg) =r.

Remark. (Socially Optimal Portfolio Choice) Under fixed seller acceptance, consumer welfare
is strictly higher for the safer portfolio x = xi, because it lowers the run probability and preserves
resources available for redemption.

The stabilizing effect of x; operates via (i) a higher liquidation value #(x.), and (ii) a
less dispersed fundamental distribution. A sufficient condition for (ii) to be stabilizing
is 0*(xz) < R, which is satisfied when the ex-ante run probability is below one half-an
innocuous condition (henceforth assumed to hold); otherwise there would be no adoption.
Intuitively, because the support contracts symmetrically toward the mean R, compressing
the distribution pulls mass away from the run region if the threshold lies below the mean.

Denote by 7(N;6*(x;N),x) the issuer’s expected profits under the portfolio choice x:

§ 0*(x,N) 0 6 (x) 0—1 .
7(N: 0" (:N),x) :/ _ 2 e+ _ 7T N(xeY)de,  (17)
o)  6(x)—0(x) 6*(x.N) 6(x) — 6 (x)

and by An(N) = n(N;0* (xg;N),xg ) — ©(N; 0*(xz; N),x1) the private gain from risk-taking.
Note that for a given adoption rate profits are decreasing in the run threshold, dn/96* < 0.
No commitment. If the issuer’s portfolio choice cannot be credibly verified, coin holders
correctly anticipate x = xz. Choosing x;, only lowers the issuer’s upside without affecting
beliefs or adoption. Thus, selecting x* = zy maximizes expected profits.

Commitment. Suppose instead that the issuer can credibly commit to x (e.g., via a

regulatory disclosure regime). Even then, private and social incentives may diverge:

Proposition 8. (Portfolio Choices under Commitment) Under fixed seller acceptance the
privately and socially optimal portfolio choices can differ even if the issuer can commit. An example
for A > 0 & x* = xy < x5F = x;, emerges for x, "\, 0 if the adoption rate is locally unaffected by
changes in x, i.e. if Agg>0and Nygyy <0,and if & /81 < E.

Proof. See Appendix Section|A.10.7, which also defines & > 0.

Intuitively, for &, /£, sufficiently small, the safe portfolio has a significantly lower upside,
while generating small stability gains. The result is an incentive for the bank to take risk.
Although the existence result in Proposition [§|is established for the limiting case x;, \, 0,
the key mechanism continues to hold away from the limit, aslong as the response of N* and
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0" to changes in portfolio risk remains weak-which is assured when adoption is locally
insensitive (for Agz > 0 and Ay < 0). In such environments, disclosure and market
discipline alone are insufficient: capital, liquidity, or collateral-quality requirements are

needed to restore the alignment between private and social incentives.

Skin in the game. In fact, the misalignment between the privately and socially optimal
portfolio choice is less likely to occur if the monopolistic issuer has additional skin (or
capital) exposed, which could, e.g., stem from future transaction fee income (Section ,
or from the affiliation with a cryptocurrency exchange@ Corollary 2|develops this insight
by adding a disutility term d in a parsimonious way to the issuers expected profits in (17).

Corollary 2. (Skin in the Game) Suppose the stablecoin issuer incurs an extra disutility, d > 0,
from bankruptcy. Then 3d > 0, such that x* = x5 for x, \ 0 ifd > d > 0.

Competition. Notably, the mechanism described in Proposition[§]is not robust to the in-
troduction of fierce competition among multiple issuers. Assuming a contestable market,
new entrants can credibly announce their risk and compete by setting x. This results in
an outcome that maximizes consumer welfare. Thus, barriers to entry, such as switching

costs, suggest to play a significant role in creating a moral hazard wedge.

Policy discussion. The results in this section speak directly to the policy debate on
stablecoin regulation. Persistent opacity regarding reserve composition and self-reported,
non-verifiable disclosures have been central regulatory concerns since at least 2021 (US
2021} Bains et al. 2022). Without credible commitment, a classic moral-hazard problem
arises, inducing excessive risk-taking. Disclosure regimes such as the U.S. GENIUS Act
can strengthen commitment by enabling external verification of portfolio quality, yet
disclosure alone may not suffice-particularly in a highly concentrated market (Figure
where competitive discipline is weak. Effective regulation must directly shape issuer
portfolios through requirements on reserve-asset quality, liquidity, diversification, and
custodial risk management. Moreover, adequate capitalization is essential: capital buffers

not only absorb losses but skin-in-the-game also helps to align private and social incentives.

2In practice, USD Coin and the exchange Coinbase is such a cases. A crypto exchange experiences a
significant disruption and possibly risks bankruptcy if its affiliated stablecoin is devalued. Consequently,
its issuance policy is likely to be more prudent. The self-reported asset breakdowns published by issuers
suggest that this conjecture can be verified; already in October 2022 USD Coin claimed to be exclusively
backed by U.S. government guaranteed debt instruments, which stands in stark contrasts to the more risky
investments by the non-affiliated stablecoin Tether USD during that time (see Table|A2|in the Appendix).
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5 Extensions and Robustness

In this section I discuss several extensions to the model and the robustness of the main
findings. First, Section 5.1 discusses the stabilizing role of congestion effects leading to
an endogenous response of conversion costs. Then Section [5.2] considers the resilience
of the issuer, introducing fixed costs, transaction fee revenue and a drop in seigniorage.
Thereafter, Section [5.3| discusses e-money providers, narrow banks and a hybrid CBDC.
Finally, Section covers alternative model specifications and robustness.

51 Congestion: Endogenous Conversion Cost

Congestion effects are important in crypto markets, where large transaction volumes
within short time windows can trigger sharp fee increases. Figure[A2in the Appendix doc-
uments such an episode around the USD Terra devaluation in May 2022, when Ethereum
on-chain fees on the dominant network used by USD Terra rose more than fourfold, likely

dampening outflows from Tether and mitigating contagion across stablecoins.

To study the stabilizing role of congestion, I let the conversion cost at r = 1 depend on
the aggregate conversion demand, 7§ (A) =7+ yA with y > 0. Similar to Diamond-Dybvig
models with increasing nominal =1 good prices (Skeie[2021; Schilling et al.[2024), higher

conversion demand raises conversion costs and rations the run threat.

Corollary 3| shows formally that a stronger endogenous response to congestion has
a stabilizing effect. Perhaps surprisingly, the probability of runs is lower than in the
benchmark model even if the endogenous conversion cost is lower than the exogenous
conversion cost used in the benchmark model for a wide range of aggregate conversion
demands, which can reach up to A = 1/2.

Corollary 3. (Endogenous congestion cost) Under the conditions of Proposition 2|, the revised

equilibrium condition for the stablecoin runs game is:

e/ o _ _ X 1 r—kA)0*/r—vy
(6%) = Apfz—(f—i-E)—i—/(e*l)r (1—( 111<A dA=0.  (18)

k(6*—r)

The probability of runs decreases when the conversion cost is more sensitive to increases in the
conversion demand, d0* /dy < 0. Moreover, it is lower than in the benchmark model with an
exogenous conversion cost if Ty < T+ x /2. This result holds even if t{(A) < 11,VA € [0,1/2).
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5.2 Resilience of the Issuer and Seigniorage

The probability of stablecoin runs, Prob{6 < 6*}, stands in a close relationship to the
profitability and resilience of the issuer via the critical threshold A(6) from Equation ,
which describes the strength of the issuer to stem against conversion demands atz = 1. I
consider two modifications of the baseline model that alter the issuer profits in Equation
(I7). First, I consider a variant of the model with fixed operating costs. Second, I allow
the issuer to generate income from transaction fees. Lastly, I study the effects of changes

in seigniorage. Proposition 9 gives a formal summary of the results.

Proposition 9. (Fixed Costs of Operation and Transaction Fee Income) Under the conditions
of Proposition |2| the probability of a stablecoin run:

(a) increases in the level of the fixed cost: dProb{6 < 0*}/d& >0
(b) decreases in the transaction fee income: dProb{6 < 0*}/df <0, if ft is not too high
(c) decreases in seigniorage income: dProb{0 < 6*}/dy < 0.

Proof. See Appendix Section|A.10.8| which also explains each model variant.

Note that the results of Proposition[Jjare derived for a fixed adoption rate N by analyzing
the continuation equilibrium as in Proposition[2} Intuitively, factors lowering the resilience

of the issuer to withstand redemption requests lower the probability of a stablecoin run.

5.3 Stablecoins vs. E-money, Narrow Banking, and Hybrid CBDC

The GENIUS Act authorizes insured banks and qualified non-bank institutions to issue
stablecoins, subject to federal oversight and a 100% reserve requirement. If accompanied
by adequate safeguards for operational and technological risks, and a central bank back-
stop, privately issued stablecoins can in theory serve as a risk-less medium of exchange that
tulfills the no-questions-asked principle (Gorton and Zhang|2021). In fact, tightly regulated
stablecoins can be a substitute for a US retail CBDC (Waller 2021} |Andolfatto 2021b)@

Through the lens of the model, tightly regulated issuers can be represented by adjusting
the fundamental 6 and the liquidation value r (see Section [3.3.1). Specifically, requiring
investments in safe assets (e.g., short-term Treasuries) and imposing capital buffers ensures
0 > 1. The remaining fragility arises solely from liquidity shocks when divesting assets

is costly or uncertain, which can be modeled as incomplete information about (6) with

24Guch arrangements are akin to a hybrid CBDC architecture, where users hold a direct claim on the
central bank BIS|(2021). China’s e-CNY and the narrow-banking regime applied to Alipay and WeChat Pay
illustrate this approach, where the issued e-money is fully backed with deposits at state-owned banks.
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' (0) >0, where the liquidation value can fall short of one for low fundamental realizations.

Applying the same global games logic as in Section 3.1 yields similar insights.

To remove such liquidity-based runs, a central bank can grant issuers access to its
balance sheet or require them to hold reserves like narrow banks, so that » > 1 in all states.
A remaining concern is the limited profitability of these designs in a low interest-rate

environment (Proposition @c) E which may call for additional capital buffers or subsidies.

5.4 Robustness

Throughout the paper, I consider a monopolistic stablecoin issuer. Allowing for multi-
ple issuers primarily reinforces the role of fixed operating costs discussed in Section
duplicated costs spread over smaller user bases make smaller issuers more fragile. Con-
versely, the destabilizing composition effect from Section 3.1| strengthens if the dominant
issuer, with the highest adoption, disproportionately attracts flighty coin holders.

From a policy perspective, contagion risk warrants focusing on the weakest link, which
could be lightly regulated off-shore issuers. Empirical evidence points to strong intercon-
nectedness within crypto, where market spillovers often exceed idiosyncratic variation
Ferroni (2022). Likewise, stablecoins exhibit high co-movement across issuers and with
other crypto assets Gorton et al.| (2022). Hence, assessing individual issuers in isolation is
insufficient: institutional similarities and potential linkages imply that a run against one

coin can serve as a wake-up call, prompting a wider run (Ahnert and Bertsch|2022).

6 Testable Implications

The nascent empirical literature on the stablecoins market has documented that stablecoins
play a key role in the $3-4tn market for crypto assets (Hoang and Baur|2021). Moreover,
there is an increasingly closer link with traditional financial markets, as well as a high
co-movement within the stablecoins universe, which raises the risk of contagious runs@
In fact, changes in the stablecoin market capitalization affect the US commercial paper and
treasury markets (Barthelemy, Gardin and Nguyen 2023; Ahmed and Aldasoro2025). As

2 As emphasized by Jean Tirole in a 2025 Financial Times interview, https://www.ft .com/content/
445e7fbb-1ec8-47£f3-b74d-87£7960e85d6.

“Gorton et al.[(2022) measure the frictions faced by stablecoin holders when transacting and converting
their coins to fiat currency, documenting a negative association with the convenience yield and a high
co-movement. (Grobys et al.| (2021) show that Bitcoin volatility is an important factor driving the volatility
of stablecoins. In related work, Lyons and Viswanath-Natraj| (2020) show that Tether’s peg to the US dollar
is primarily stabilized by arbitrage traders, rather than by the issuer.

33


https://www.ft.com/content/445e7fb6-1ec8-47f3-b74d-87f7960e85d6
https://www.ft.com/content/445e7fb6-1ec8-47f3-b74d-87f7960e85d6

the stablecoin market continues to evolve, further research in this area will be critical to

ensuring stability and resilience through the design of effective regulatory frameworks.

This section discusses the implications of the proposed theory and how they could be
tested. First, the model offers a prediction for adoption and fragility that highlights the
destabilizing role of increasingly flighty adopters (Proposition [[jand Corollary ).

Prediction 1: The most marginal (or recent) stablecoin adopters tend to be more flighty than the
average stablecoin holder.

Prediction 1 rests on the heterogeneity in matching probabilities for consumers. Does
the marginal stablecoin adopter become more flighty when adoption reaches broader
market segments? By how much? One way to test the relevance of consumer heterogeneity
is to group wallet address data according to whether wallets are likely to belong to early
stablecoin adopters or to more recent adopters. Thereafter, groups can be associated with
a flightiness measure based on the sensitivity to deviations from the peg, e.g. during a
run (USDC during the Silicon Valley Bank failure; Terra-Luna crash).

Next, I move to the model predictions for stablecoin adoption and fragility in relation
to the transaction role of stablecoins (Sections |3.143.2).

Prediction 2a: The stability of stablecoins is positively associated with their transaction value.
Prediction 2b: The transaction value of stablecoins is (i) positively associated with seller accep-
tance, and (ii) negatively associated with the flightiness of the marginal coin holder.

The predictions follow from Proposition[2Jand Corollaries {5} respectively. Empirically,
these predictions are more challenging to test. A stability measure could be constructed
based on the tightness of the peg, e.g. the width of the price band around dollar parity
and the frequency of peg deviations. The transaction value, a proxy for the medium-of-
exchange role of stablecoins, could be proxied by their usability for purchase of goods
and services, and by measuring the transaction fees for purchasing crypto assets@ An
empirical pattern consistent with these predictions would be that peg stability improves
with the scale of transactional usage or outstanding supply.

Lastly, I turn to conditions under which stablecoins may be prone to runs that have
to do with the characteristics of traders and the market infrastructure. Prediction 3 is
based on the negative effect of the proportion of active traders, k, on the stability of the
stablecoin (Proposition 2). It could be tested by distinguishing between sophisticated and
unsophisticated investors (Liu et al.2023) and measuring the sensitivity to peg deviations.

Prediction 4 follows from Corollary [3| on the role of congestion effects. It could be tested

27In a richer model, consumers may also derive an interest income from lending stablecoins (Bertsch
2023), which constitutes an additional benefit from holding stablecoins beyond transaction-cost savings.
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using data on transaction fees and blockchain network volumes. Regular network up-
dates and changes in the market infrastructure may offer quasi-exogenous shocks to the
sensitivity of conversion costs to network congestion. One could also test whether coins

on a blockchain with more sensitive transaction fees are more stable.

Prediction 3:  The stability of stablecoins increases if the proportion of active traders is lower.
Prediction 4: The stability of stablecoins increases if transaction costs are more sensitive to spikes

in conversion demand.

7 Conclusion

This paper modifies existing theories of bank runs and currency attacks to analyze the
stability of stablecoin arrangements. Critically, I take a payment perspective where both
insured bank deposits and risky stablecoins offer a transaction value for heterogeneous
users who wish to have the right money on hand. This allows me to highlight a novel
link between issuer fragility and the composition of coin holders, which is shaped by
endogenous stablecoin adoption and seller acceptance. The theoretical framework aims
to inform risk assessment and appropriate regulation of stablecoins. It identifies two
mechanisms that justify prominent concerns about excessive stablecoin adoption: (i) a
run externality, whereby broader adoption increases the flightiness of marginal holders,
raising run risk; and (ii) network effects, which erode the payment role of bank deposits.
Moreover, the analysis provides theoretical support for the GENIUS Act’s approach of
combining disclosure requirements with reserve management oversight, while suggesting

that additional capital requirements may be necessary to address systemic fragility.
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A Appendix

A.1 Additional Figures
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Figure Al: End of month market capitalization over the period from Jan. 2020 to Oct. 2025,
when the total capitalization expanded from ca. $5bn to $300bn. Source: coingecko.com.
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Figure A2: End of day (CEST) price in US dollars (left axis) and average daily gas price on
the Ethereum network measured in 10~ units of the cryptocurrency ETH (right axis) over
the period from May 6, 2022 to May 16, 2022. Source: coingecko.com and ycharts.com.
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Figure A3: Solvency of the stablecoin issuer as a function of the fundamental realization
0 and the population fraction A of coin holders demanding conversion. Only in the
intermediate region, 6 € (6y,6),), the solvency of the issuer depends on the level of the

aggregate conversion demand A.

A
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Figure A4: The above figure illustrates how the differential utility payoff A; ;(A; 0) varies
with A for a given 6 € (1,6). If the issuer is solvent, i.e. for A < A(8), then A, is (locally)
invariant in the aggregate conversion demand and negative, meaning that there is no
benefit from demanding conversion. As shown in Section 3.3} this is because consumer i
belonging to group g; would otherwise not have adopted stablecoins at r = 0.
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A.2 Timeline

Timet =0

Time: =1

Timet =2

1. Seller acceptance decisions:
Sellers choose which monies
to accept for payment att =2

2. Consumers’ adoption game:
Consumers simultaneously decide
whether to convert deposits to
stablecoins (ap; = 1) or not (ap; = 0)

3. The stablecoin issuer invests
all funds received from consumers
who adopt stablecoins

4. The fundamental 6 is realized, but
unobserved; a fraction k of coin holders
become active; others remain passive

5. Stablecoin conversion game:

Active coin holders receive private
signals x; and simultaneously choose
whether to demand conversion to
deposits (a;,; = 1) or keep coins (a;; = 0);
passive holders are dormant

6. The issuer meets coin holders’
conversion requests by divesting assets

7. The outcome of the t = 1 conversion
game and the fundamental 6 are observed;
each consumer is matched with a seller

8. If the issuer’s reserves fall short of the
face value of claims held by the remaining
active and passive coin holders, the issuer is
insolvent and the stablecoins are devalued

9. Consumers buy goods and convert their
money (if necessary)

10. Type-B and type-S sellers convert the
coins received; all sellers pay production
costs with insured deposits ($)

Table A1l: Timeline of events.

A.3 Tether Asset Breakdown

Table shows Tether’s self-reported asset breakdown as of June 2022 and September
2022, when USDT was backed by a range of risky assets, including corporate bonds,
secured loans, investments in digital tokens, commercial paper and deposits in non-US
regulated financial institutions. The latest reporting from June 2023 in column 3 indicates
a reduced exposure to commercial paper and bank deposits, but more granular data is
not available, and the quarterly reporting is published with a substantial delay.

Assets

Value in bn USD

06/30/2022 09/30/2022 06/30/2023

Commercial Paper 8,402 50
& Certificates of Deposit A-1+ rating 1,434 50

A-1 rating 5,465

A-2 rating 1,499
Cash & Bank Deposits 5,418 6,077 91
Money Market Funds 6,810 7,102 8,134
U.S. Treasury Bills 28,856 39,678 55,810
Non-U.S. Treasury Bills 397 182 63
Reverse Repurchase Agreements 2,992 3,024 9,470
Secured Loans 4,494 6,136 5,504
Corporate Bonds, Funds & Precious Metals 3,487 3,194 3,386
Other Investments & digital tokens 5,551 2,617 4,041
Total 66,410 68,061 86,499

Table A2: Tether asset breakdown at 30 June 2022, 30 September 2022 and 30 June 2023.
Assurance opinion by BDO, Italy.
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A.4 Fundamental Solvency and Insolvency

The condition in Inequality (4) defines a solvency threshold in terms of the issuer’s funda-
mental 6. The issuer is fundamentally solvent for any 6 > 6, regardless of the redemption
demand A, where:

(1—x)r

6,
h r—K

> 1. (19)

Following the standard approach in the global games literature, I assume 6 > 6, so that
this solvency region is non-empty. Conversely, rearranging @) yields a critical threshold

6(A) such that the issuer is insolvent for all 8 < 6(A), given a redemption demand A:

(1—xA)r

0(A
() r— kA

> 1. (20)

This defines the threshold below which the issuer cannot meet her obligations at r = 2.
§(A) is strictly increasing in A, k and decreasing in r, implying that higher liquidation
values improve solvency prospects, while greater redemption pressure worsens them@
A lower bound for insolvency is obtained by evaluating at A =0, yielding 6, = 1.
Hence, if 8 < 6, the issuer lacks sufficient resources to meet obligations even in the
absence of redemptions. Assuming 6 < 1, she is fundamentally insolvent for all 6 € [0, 6;).

Intermediate region. In the intermediate range 6 € (6,,6,), solvency depends on the
realized aggregate conversion demand A. Equation allows to trace the solvency
boundary as a function of A, as illustrated in Figure[A3]in the Appendix.

A.5 Complete Information Benchmark: e= 0

This section considers the benchmark with complete information, where active coin hold-
ers obtain a precise signal at + = 1 about the resources available to the issuer at r = 2.
Under complete information, each holder compares the payoff from converting at ¢ = 1
to the payoff from keeping coins, taking as given the matching probabilities pp4(N) and
ps,¢(N) induced by the r = 0 acceptance/adoption profile (see Equation (3)).

Suppose an individual active coin holder i believes that all others keep their coins, i.e.
aj,—; = 0. Then her optimal strategy is to demand conversion if and only if the differential
payoff from conversion relative to keeping coins is weakly positive. A weak preference
for conversion holds whenever 6 < 6, = 1, which implies that for all 6 <1 it is (weakly)
dominant to convert.

Following the same logic, I can derive an upper bound from the weak preference for
not demanding conversion when the active coin holder i believes that all others demand

2Observe that A (0) is strictly increasing in 6 and in r for all 6 € (1,6;), as the issuer is only insolvent at

t = 2 for higher levels of aggregate conversion demand at 7 = 1. Moreover, A(0) is strictly decreasing in k, as
a higher share of active coin holders translates into a higher conversion demand, thereby making it harder

for the issuer to be solvent. Finally, note that ] (A) < 6 requires A < A(6y,).
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conversion, i.e. aj_; = 1. Let @ denote the cutoff routing weight that solves:

(pBs—pss) T2 —T1 =0, (21)

where s € {1,...,G} is the group of coin holders with the lowest probability of being
matched with a seller who accepts stablecoin payments. Then it is the (weakly) dominant
action for all coin holders with @; > @ to keep their stablecoins whenever 6 > 6.

As the analysis of the conversion game at ¢ = 1 requires that stablecoins are adopted by
at least some consumers, I assume (and later verify) that the cutoff condition in Equation
is satisfied for a positive mass of types, which intuitively requires that the routing
weight of the most stabelcoins-oriented group, g, is not too high.

Next, I analyze what happens in the intermediate region 6 € [1,6;]. Recall that the
intermediate region is non-empty and observe that for any 6 € [1,6,], multiple belief-
driven equilibria exist. Specifically, there always exists a pure strategy Nash equilibrium
where all coin holders demand conversion and a pure strategy Nash equilibrium where
all coin holders keep their stablecoins. Proposition [I0]summarizes.

Proposition 10. (Continuation Equilibrium Under Complete Information) Let e= 0. Given
Assumption (1| and a positive level of adoption N > 0, there exists a unique equilibrium of the
conversion game where all active stablecoin holders demand conversion if 8 € [6,1) and a unique

equilibrium where no stablecoin holder demands conversion if 0 € (6,,0]. In the intermediate
range, 0 € [1,6y], there exist multiple pure strategy Nash equilibria.

A.6 Posterior Beliefs

Recall that the marginal group g € {1,...,G} is defined as the group of stablecoin adopters
who find holding stablecoins least attractive. Using Equation (7)), I define for each coin
holderiin group g; € {g, ..., G} the differential expected payoff from demanding conversion,
i.e. a;; = 1, conditional on her private signal x;:

E[A1i(A;0)|x] = Prob{A <A(0)|x;} (Apg,t—11) (22)

_ "”) h(6|x:)do,

r—kA

- 6
+Prob{A > A(9)|x,-}/9 (1 +Apy T — T — VI—T
where h(6|x;) denotes the posterior probability of a fundamental realization of 6, after
observing the signal x;. While coin holders potentially face heterogenous type-specific
payoff functions, they all share an identical differential expected payoff conditional on
their group and private signal.
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A.7 Derivation of Dominance Regions

The posterior belief that the realization of 6 exceeds the level y € [8+ ¢,0— €] is:

1 if xi>y+e
Prob{0 > y|x;} = Prob{x; — & > y|x;} = % + 352 ifx € [y— eyt € (23)
0 if xi<y—e.

Based on Equation (23), I next establish an upper and lower dominance region of
very favorable and very unfavorable private signal realizations, respectively, such that the
actions of coin holders observing a signal that falls in these regions do not depend on the
decisions of others. Specifically, given Assumption 1| there exist two bounds x and X that
define the dominance regions [0 — ¢,x) and (¥, 0+ ¢].

Upper dominance region. A coin holder i belonging to group g; € {g.....,G} with the
signal x; > X, strictly prefers to keep her coins even when all other active coin holders
demand conversion, i.e. A = 1, where X,:

6y, ﬂe_ll/

Prob{6 > 6y|x; =X} — 1+ (ps, —Pp, )72+ 71 + . T

h(0|xi =Xz)d0 =0. (24)
Observe that the left-hand side of Equation takes on a negative value if x; < 6, — €
and a positive value if x; > 6, + € and 71 + (ps,, — prg) T > 0, which holds provided there
is adoption of stablecoins. Moreover, the left-hand side strictly increases in x; = X,. As a
result, a sufficient condition for no conversion demand by all coin holders can be obtained
by solving Equation for the marginal group s. There exists a unique X = X, such that it
is the dominant action for all coin holders with a private signal x; > X to keep their coins.

Lower dominance region. Analogously, a coin holder i belonging to group g; € {g,....G}
who receives the private signal x; < x, strictly prefers to demand conversion even when
all other coin holders keep their stablecoins, i.e. A = 0, where Xq solves:

r—
7

r—xg_
Prob{6 < 6ylx; = x, }(1— 11 — (1= pg)™2) — 5 ( = — (1 —Ps,g)fz) h(8]x; = x,)d6
—Prob{0 > 6y|x; = x, } (11 + (Psg — PBg)T2) = 0. (25)

Observe that the left-hand side of Equation takes on a positive value if x; < 6y — € due
to ¥ > ¥ in Assumption [} Conversely, it takes on a negative value if x; > 6, + € since
—T1 — (psg — PBg)T2 < 0. Moreover, the left-hand side is strictly decreasing in x; = x,. Asa
result, a sufficient condition for no conversion demand by all coin holders can be obtained
by solving Equation for group G. There exists a unique x = x; such that it is the
dominant action for all coin holders with a private signal x; < x to demand conversion.

This defines the dominance regions [0— €,x) and (%, 0+ ¢].
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A.8 Critical Mass Condition

Suppose that x| <xg,Vg € {g,....G — 1}, meaning that coin holders belonging to a group
with a higher relative benefit from stablecoins are less inclined to demand conversion. For
adoption by at least one and up to G — (g — 1) groups, the critical mass condition is:

) /*\79* . *_6*
,ug,mgmax{o,mm{% + xgze 1+ Zg:§+1 mg maX{O,mln{% + xgze 11}

N

(6*—1)r

=A()= (26)

where iz € (0, 1] accounts for the fact that the coin holders belonging to group g, who have
the lowest relative benefit from holding stablecoins, may be indifferent between adopting
stablecoins or holding bank deposits, as discussed in Section 3.3]

A.9 Indifference Conditions

There are G — (g — 1) indifference conditions, one equation for coin holders in each group,
that depend on the run threshold 6" and the group-specific signal thresholds xZ, ..., xg:

E[Al,i(AQQ*NX;:g] = O,Vge{:g\,...,G}. (27)

A.10 Proofs

A.10.1 Proof of Proposition

I start with preliminary results. It is convenient to redefine the private signal as x; =
0 + oni, where n; = U ~ [e,+ €] and & = on;. Following Sakovics and Steiner| (2012) the
aggregate action can be rescaled as:

G
AT = ) 1mgF(rg —&) +musF (T —8),
g=s+

where & is a scalar and T' is a vector of I',s that relates the group-specific threshold signals
to the signal threshold of a group k as follows: T, = (x; —x7)/0 and 6 = x; +0&. Thenl
write the strategic beliefs as:

G
Ag(AT) =Pr{A(Tg—n.T) <A} =Pr{ Y myF (T —To+1n)+muF (Ts—Ty4+1) <A}
h=s+1

Define ¥ (A,T) as the inverse function of A(&,T') with respect to &, where d¥/dA < 0,
because dA(E,T)/d€ < 0 for A(E,T) € (0,1). Next, following Lemma 4 in Sékovics and
Steiner|(2012) I establish that the densities associated with the strategic belief are bounded:

0< JdAL(A,T) f(Te—8(AT)) < 1

B aA Zgzs—i—l mgf(rg - é) + ms.usf(rs - 6) B mg'
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Finally, define the expected utility payoff of the threshold type as:

1
H] (x1,T) = E[A(A;0,N)|(xg.8i=¢)] = /0 A(x; +09(A.T),A)dA,(A.T),
where the adoption rate is dropped in the last line for simplicity. Note that the beliefs are
independent of o so that the H{ (x;,I')’s are well-defined for all o > 0.

The proof proceeds in three steps. Step 1 follows the translation argument in Frankel
et al.| (2003) and establish by contradiction that if there is a solution to the system of
indifference conditions given by:

HZ (x1,T) =0,Vg € {s,...,G},

then it must be unique. Thereafter, I establish equilibrium convergence (Step 2) and apply
the Belief Constraint of Sdkovics and Steiner| (2012) (Step 3) to derive (9) in Proposition
Finally, existence is established by iterated elimination of dominated strategies.

Step 1: Suppose there exist two distinct solutions, (x1,I') and (x},I7).

First, consider the case where I' = I" and x; # x}. Recall that A; is weakly decreasing
in 6 for all groups so that A;(x] + 09 (A,I"),a) < Ai(x; + 0®(A.T'),a) if x| > x;. More-
over, A* > (A*)' if x| > x| since A(8) is strictly increasing in 6. As a result, A (A*,T) >
Ag((A¥)".T). There is a contradiction: HJ (x},T') < HJ (x1,T), because A;(x} + 69 (A,T")) <
Ai(x1+00(A,T)) forA € ((A*)",A*) due to the discontinuity of A; at the solvency threshold

~

A(0) so that:

/O ' A(A, + 6B (A,T))dA,(4%).T) < /O ' Ai(Avx1 + 6B(A,T))dA, (A%,T).

Second, consider the case where I' # I'” and, without loss of generality, x; < x}. Choose
h € argmax, (I, —T'¢) and let D = max, (T, —T;) > 0. Notice that I, - T}, > T}, —T'¢,Vg €
{s,...,G} holds with strict inequality at least for one group g due to the assumption that
I #1'. Let ¥; = x| + oD, then:

H (81.T) < HY (x1.T).

which leads to a contradiction, as shown below. Next, use the substitutiona = a(I', — n,T),
X, = %1 + oI, and x}, = x| + oI}, to re-write the expected utility payoff as:

+n
HE0.T) = [ 85— omed(Ty = 1)) (i)
+n
Hyy (x),T") = /_n A (xy = onp@(Ty — 1. 7)) f (na)d i,

where I use that ¥(A,T) is the inverse function of A(&,T) with respect to . Observe that
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X, = x] + oD+ oI’ = x},. Moreover, because of I’} — F’g >T—TgVges,.. G}
Y mg(1—F(Ty =T +m4)) +mspis(1 = F (T =T, +1my))

8
= ng(l —F(Tg—Tp+m)) +mepts(1 = F(Is =Ty +mp)),
8

which implies: a(I'), — np,I7) > a(T'y — np.T), VN, Next, T establish strict inequality by
noting that the 1, solving a(I', —n;.T) = A(Fy — o(n;)) and the (n;)" solving a(I'), —
(n;),I") = A(x, — o(n}")’) are related to each other as (1)’ > n; for &, = x},. Moreover, I
can show that (1)’ > n;’ by contradiction. Suppose that (1;)’ = 1,/ and recall that there
exists a g such that T’ — F(’g > T —T,, Vg € {s,....G}, for which:

(1 =F(Ty =Ty +n;) > (1= F(Tg =Ty +15)).

Asaresult, a(I', —n;,I") > a(I', —n,,T), which contradicts (1)’ = n;;. Hence, H? (%1,T') —
HP (x},T") <0, meaning there exists at most one equilibrium characterized by threshold
strategies, which concludes Step 1.

Step 2: Next, I show that the system of indifference conditions given by:
H (x1,T) =0,Vg € {s,...,G}

is well approximated by H{ (x;,I') = 0, as 6 \, 0. Note that limg o& = limg o 9(A,T') =0.
Moreover, all group-specific signal thresholds x; must lie in the 6/2-neighborhood of the
fundamental threshold 6* (o) for the indifference conditions to hold. Following Sédkovics
and Steiner| (2012) I can show that HZ (x1,T) = 0 converges uniformly to Hy (x;,I') when ¢
1s small. To do so, I use the fact that the differential payoff from demanding conversion,

A, is Lipschitz continuous to the left and right of A(6).

Step 3: Next, I apply the Belief Constraint. Using the previous results, the signal
thresholds x; converge to the fundamental threshold 6 solving:

(6*—1)r

k(0% —r) .
/O ((PBg — Psg) T2 — 1) dAg(A,T™)

(r—xA)0/r—y
1—xA

1
+ ﬁG*l)r
K(6%—r)

Summing over the coin holder groups on both sides, I arrive at Equation (9) using the
Belief Constraint, which crucially depends on the assumption that the pp¢s and ps s are
not contingent on the aggregate action of coin holders, to obtain:

1 — * e

0*—1)r _
K(6%—r) 1 KA

(1 + (PBg—Psg)To—T1 — ) dAg(A,T*) =0,Vg € {s,....G}. (28)

where Z?ISH MmgAg(A,T) +muAs(A,TF) = A.
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It remains to establish the existence of a threshold equilibrium following iterated
elimination of dominated strategies as in Sakovics and Steiner (2012), building on Ap-
pendix Section The existence of the upper and lower dominance regions assures that
6 € (xg— e.x;+ €) holds. This concludes the Proof of Proposition

A.10.2 Proof of Proposition

I establish the comparative static results summarized in Proposition 2] for fixed seller

acceptance by analyzing Equation @) d(de—IpB) =-17,<0, 4= aaAap >0, 4 dﬁ = aaAﬁp 7 <0,
dl _ di —dl _ 1
dn = 1 <0, 75 =8P, gy = f(%l)ledA>O
0*—1) g*

di ! KA o —1 6 e v

£ - — _9*dA-— 1- e <0,

dr /’(:(’;*11; r2(1—xA) Kk (6%—r)? ( 1— (gi:i)r + 1— (%**_,lr)r

* « (6*—1) g*
a _/1 ( A (l—e——w))dA—i— O —Ur (12— v
dx e \ (T KA)? r K26 —r) G P T
dl 1 r—KkA 1— 1 =De
il O e U G G =i o ) <O
x(0%—1) e D

By application of the IFT the results in Proposition 2| follow. This concludes the proof.

A.10.3 Corollary@ and
Corollary 4{and |5/ offer a formal analysis of the stabilizing and destabilizing effects.

Corollary 4. (Composition Effect) Under the conditions of Proposition[2and for a given N > m,
consider am increase in seller acceptance of stablecoins, S(N), or a shift in consumption preference
weights towards stablecoin-native sellers, i.e. a decrease in ®¢ or a relative increase in the mass of
crypto-enthusiasts, e.g. dmg = —dmg_1 > 0. This decreases the probability of stablecoin runs.

Corollary 5. (Adoption & Fragility) Under the conditions of Proposition 2] and for fixed seller
acceptance profiles the probability of stablecoin runs increases with the adoption rate if broader
adoption reduces the average relative payment preference for stablecoins, i.e., d0*/dN > 0 if
dAp/dN > 0, which holds for N > mg.

A.10.4 Proof of Proposition

Fix the seller acceptance profiles fZ, f5. The game is solved by backward induction. At
t = 2 consumers enter the consumption stage either as coin holders or as bank depositors
and use the available funds to consume. At¢ = 1, consumers also enter the period either
as coin holders or as depositors. Depositors do not find it optimal to convert their money
at t = 1, because they found it optimal to hold deposits initially and would otherwise
forgo the positive interest rate. Given that the issuer can always assure a value that is
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arbitrarily close to one dollar at t = 2, it is the dominant strategy for active coin holders
not to demand conversion, i.e. aj; = 0,Vi.

Let’s consider the adoption game att = 0. Given r,0 1, consumer i’s problem is:

max (ao,,-(l — (1= psg)®)+ (1 —ao;)(1+ P — (1 —pB,gi)Tz)) ,
ao?iG{O,l}

where pp, = 0, + (1 — @,) f5 and ps; = @, f2 + (1 — @,). The adoption results of Proposi-
tion (3| follow. This concludes the proof.

A.10.5 Proof of Propositions @ and

Total welfare (W) comprises consumer welfare (WC), seller welfare (W5) and the issuer’s
monopoly rent (IT):

G 0*(N 0
WC(N,f) = Z mg (/ (N.1) urun_de + uh° run_de )
g=g(N.f)+1 2] 0 _Q 6*(N.f) 0 _Q
g(N)
+ Y mg(14r°— (1= ppg(N.f)) ) (29)
g=1

urun (N) =

( K(1—7 — (1 - ppg(N.f))%) ) (30)

1= x) (Y~ (1= sV )
ug?MN(N) = 1= (1= psg(N.f))n (31)
max {0, (uN — §%})?

WS(N.f) = A e L(1-2) SRS (32)
% N(e-1)
(N, f) = /9 R (33)

where we used in (29) the fact that the marginal group g(N) is exactly indifferent. Note that
under our focus on an environment with a low per sales margin and a small acceptance
costs, i.e. when scaling down u and cost distributions with some parameter ¢ — 0, the
seller welfare becomes arbitrarily small. Further, abstracting from the issuer profits the
constrained planner maximizes W¢.

Take the equilibrium N* attaining the highest level of welfare (if multiple fixed-points
exist) and suppose the adoption rate is interior, i.e. N* € (Zg:j mg,Zg: j—1/mg). Using an
envelope-type argument at the interior adoption margin, I evaluate the first derivative at

49



N* by plugging in from the adoption indifference condition (Equation (11)):

w(ON) M St S GO ug™ (N) —ug® ™™ (N) | 6
_— = mg, — sMs = X
aN. NN AN 6-6 v TR N 6-6 NN
G 9*(1\/) durun(N) 46 9 duno run(N) 4o 8=g

+ m / g — 4 8 = .+ mep . (N)T: v

g:%rl g( 0 AN 6-6 Jew) dN  6-86 v ; sPls V)2l

Note that the first and second summands are negative if d0* /dN > 0, which holds when-
ever the adoption rate is interior (Corollary [5). Moreover, summands three and four
are zero for fixed seller acceptance and negative for endogenous seller acceptance with an
elastic acceptance margin of type-S sellers, pp ,(N) < 0, and an inelastic acceptance margin

of type-B sellers, e.g. if 5" = o, which implies that pj ,(N) — 0.

Asaresult, N* > N5 whenever the adoption rate is interior (this requires that consumers
from more than one group adopt stablecoins and N* ¢ {Zngz My, ..., Zg:G_l mg}) and seller

acceptance is fixed (Proposition @), or N* > N5” when the acceptance margin of type-S
sellers is elastic and the acceptance margin of type-B sellers is inelastic (Proposition [7).
Note that for fixed seller acceptance WC does not have a global maximum to the right of N*.
For endogenous type-S seller acceptance a sufficient condition that allows exclusion of a
global maximum to the right of N* is given by dAp/dN > 0, meaning that the composition
term dominates the acceptance term (LemmalT).

A.10.6 Proof of Corollary

Let the planner impose a small levy 1 on the marginal adopter. In the interior region (a
positive mass of the marginal group exists), consumers’ private differential benefit from
adopting stablecoins in the r = 0 adoption game becomes A z(N,0*(N)) —t1(N) = 0. We
continue to focus on a consumer welfare criterion. So the planner’s first-order condition
at the constrained optimum N7 is dW¢ /dN/|ys» = 0. To decentralize the planner’s choice,
there must be the same incentive at the private margin so that the externality is fully
internalized, which implies a levy 1*(N) = —dW®/dN evaluated at N5" for implementa-
tion. Thus, the decentralized cutoff Agz(N,0*(N)) —1*(N) = 0 holds precisely when the
planner’s first-order condition holds.

From Equation in the Proof of Propositions[f|and [7]we can obtain:

~0
———
dw€ owCde* _, | oWCdpg, OWCdps,

_ ] 35
dN 96" dN 5=t | Jpp, dN | dpsg dN (35)

If seller acceptance is fixed, dppg/dN = dpss/dN = 0, then Equation follows. On
interior regions with at least two groups of adopters, d68* /dN > 0 under fixed acceptance,
while 0W¢/96* < 0, so 1*(N*) > 0.

Instead, with endogenous type-S seller acceptance and 5" — oo we obtain Equation (16),
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where dpp,/dN < 0 and awWE€ /o PB,g > 0. The results in Corollary follow.

A.10.7 Proof of Proposition

Using Equation (17), the differential expected payoff from selecting x = x, is:

AT = (en) — 7(x) /O(XL)(O ) AL PR L (36)
T=T -7 = — — RS — -
B 0" () 0(xs)—0(x)  Jor(o) 6-6
6(0) Vv 0(x1) N* N* 6 N*
= —/ 0-1)— " 4o L(91)< _ )d@—i— /7 (6-1)—— db
0% (x,) 0(x.)—0(xL) 6*(0) 0(x)—06(x) 6-—86 0(xz) )
< 0, cost of weakly dispersion/adoption effect > 0, benefit of a higher
more runs if x = xy (sign depends on primitives) upside if x = xy

where N* = N*(x,6*(x)) denotes the adoption rate given x; and N* is the adoption rate
from the baseline. Note that 7 > 0, VN (x,8*(x)) > 0 since 8*(x) < 6), < 6.

Whether or not it is optimal for the issuer to select x; depends on the relative strength of
the three effects in Equation (36). Intuitively, a lower sensitivity of the probability of runs
and of adoption to a change in the riskiness of the investment portfolio are more likely to
incentivize the issuer to select xy. To make this point, I construct an existence result by
showing that A = 7(xy) — m(xz) > 0 for xz \, 0 in case adoption is locally insensitive to
change in the portfolio riskiness: ﬁﬂf *(x2,0%(x2))|x,=0 = 0.

Specifically, the proof establishes an example for x* = x < x°F that arises for x;, \, 0if the
adoption rate is locally unaffected by changes in x, which is assured if Ay 3(N,6%(N)) > 0.
To do so, I take the derivative of with respect to x; and then examine the limiting case
xz, \ 0. First, note that for x;, = 0 7(xz) — 7(0) = 0. Moreover:

_dm . 00%(xy) dF ., N*
T TR ) TP 1) 7
— v = N7k 0 do
dO(x) N o 8) N* (e — i)
— lim ——2(0(xz)—1)=————+ 1 0—1)——Lt——t
Simy =gy, (O0x2) )e(xL)—g(xL)+xfi“o e*m( )(e(xL)—Q(xL))2

because N* is locally unaffected by changes in x;, by assumption. Note that the first sum-
mand is negative and the third summand is also negative (because 6" (xz) > 1,d0*/9d7 <0
and dr/dx;, > 0). Instead, the second summand is positive. Given that the derivatives
of the run threshold are finite, we have that the overall expression is positive and, thus,
limy, 0 Am > 0if & /& — 0. To see this, observe that the negative second summand strictly
dominates the positive third summand. By continuity, there exists a & > 0 such that the

result in Propositionholds for all & /&, < €. This concludes the proof.

A.10.8 Proof of Proposition@

This proof comprises three parts and builds on results from the Proof of Proposition 2}
Part (a): So far,  assumed that the issuer does not face costs of operation. Now, consider
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a fixed operating cost £ > 0 that accrues at = 0 and is deducted from the funds collected@

(6N &) _/GW;&) 8 d6. (38)

Observe that £ lowers the issuer’s profits for a given 6* and N*. Furthermore, profits
decrease in 6* and increase in N*. Proposition [9fa) establishes that d6* /d& > 0, meaning
that the reduction in profits gives rise to a destabilizing effect and to lower adoption. This
is because of a lower resilience of the issuer who is insolvent already for a lower level
of aggregate conversion demand. The fixed cost lowers the available resources, thereby
making it harder to meet the payment obligations. Specifically, the issuer cannot meet her
t =2 payment obligations if N(k(1 —A) +1—x) > (N—§)0 —NkA6 /r. Rearranging gives:

N'—¢
9 -

mr<A(N*,¢9,o),v5 > 0. (39)

A(N*;0,&)

Notably, for a given level of Ap, the described effect is weakened as adoption increases
when the fixed cost is shared by a larger user base (formally, £ is divided by N*).

Using the modified critical threshold in Equation , I can, for a given N, derive the
modified equilibrium condition as follows:

L75r—1cA;

= — 1 — - i W dA =0 40
I1(6*;N, = Apmr—11+ [v-¢.. 1 L =0.

( 5) § (%) 1 N?!if_,_)lr 1—« ( )

As in the Proof of Proposition 2| I have that dI(6*;N,&)/d6* < 0. Moreover:

dl(06*; 1 06*/N 0*
dI(9"N.E) Jutar IN g O ( wA>>O'
d& %rl—KA Nx(0*—r) \ 1 — kA

By application of the IFT. This concludes the proof or Part (a). Notably, N*/d& < 0, meaning
that the reduction in profits gives rise to a destabilizing effect and to lower adoption.

Part (b): Next, I consider the variant of the model with transaction fee incomeEG] Let
f €[0,1] denote the fraction of transaction costs that are accounted for as fee income by
the issuer. The modified issuer profits are:

4 -1+ (1-ps)fn
0" N*: :/ N* | 0. 41
o= [ = (a1)

29 A variable cost has effects that are identical to a reduction in transaction fee income.

3n practice, part or all of the transaction cost may stem from fees earned by other parties, such as by
crypto miners for on-chain transactions or by cryptocurrency exchanges and other intermediaries for off-
chain transactions. However, some stablecoins are affiliated with exchanges (e.g. USD Coin with Coinbase),
meaning that issuers may accrue part of the fees. To account for this institutional feature, I consider a profit
sharing arrangement between the issuer and other parties.
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where 1 —pg is the weighted average over the group-specific probabilities to meet a
consumption good seller who only accepts bank deposit, meaning that coin holders need
to convert to bank deposits at ¢+ = 2 and incur the transaction cost 7,. Now, the issuer is
only insolvent for a higher aggregate conversion demand:

X(e,f)z( o1 ' Ae)vf>o0. (42)

1—f11)0—rKk
The additional resources available translate into a higher critical threshold for the pop-
ulation fraction of coin holders demanding conversion, i.e. dA(0,f)/df >0 provided
f71 is not too large. The extra revenue promotes the issuer’s ability to meet its payment
obligations. The issuer cannot meet its 7 = 2 payment obligations if N(k(1 —A) + 1 —«x) >
NO —NxA(1—f1,)0/ r Rearranging gives A(6;N, f) in Equation , which is unique
as long as f; is not too large.
The equilibrium fundamental threshold 6*(N*; f) is governed by a modified equilib-

rium condition. By application of the IFT it can be shown that d6*/d f < 0 provided ft
is not too large. This concludes the proof of Part (b).

Part (c): Lastly, I consider a change in seigniorage income, which I capture as a shift in
the fundamental support in an additive fashion: 8(y) = 8 + v and 6(y) = 0 + v, where
0 <y < 6, — 6. Given that 6" is not affected by changes in y, the result in Part (c) follows.

310bserve that I assume that the revenue from the + = 2 transaction fees does not count against the
payment obligation, e.g because it does not accrue in time. This assumption simplifies the analysis.
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Online Appendix to "Stablecoins: Adoption and Fragility” by Christoph Bertsch

A Generalization of Proposition

I start with a partial equilibrium analysis, taking sellers” acceptance decisions as given.
The objective is to describe the interplay between beliefs about fragility and adoption.
Then I discuss the joint equilibrium of seller acceptance, consumer adoption and run.

Adoption with Runs Under Fixed Acceptance. Recall that for any given N € [0, 1], Propo-
sition 1| delivers a unique monotone equilibrium of the t = 1 conversion game, character-
ized by the threshold 6*(N). Holding seller acceptance fixed, broadening adoption brings
in less crypto-oriented users (a composition effect) and raises fragility (i.e., 6* increases).

Define the block mass M (k) = Y5, my, for k € {1,...,G}, withM(1) =¥%_ mj, =1, and:
g(N) =max{g: Ag,(N,0%(N)) <0}, g(N) =min{g: Agy(N,0(N)) >0}

with the conventions g(N) = 0 (g(N) = G + 1) if no group has Ag, < 0 (Ag,g > 0).

Definition 2. (Aggregate Best-Response Correspondence) The aggregate adoption best-response
at belief N is the correspondence: B(N) = [M(g(N)),M(g(N)+1)] € [0,1].

The lower endpoint M (g(N)) sums the masses of all strictly adopting groups (g > g(N)),
while the upper endpoint M(g(N) + 1) adds, when present, the indifferent group g(N) =
g(N)+ 1 at full adoption. If there is no indifferent group, then g(N) = g(N) + 1 and
B(N) collapses to the singleton {M(g(N))}. Note that on any interval of N where the
pair (g(N),g(N)) is constant, both endpoints M(g(N)) and M(g(N) + 1) are constant; the
correspondence changes only at finitely many N where either cutoff switches.

For g > g(N) adoption is strictly optimal and for g < g(N) non-adoption. If the marginal
group exists, i.e. if g(N) = s where s solves Ay = 0, its members are indifferent. Let’s fix
the following ex-ante tie-break (all adopt) using the right-continuous selection: pz(N) = 1
andT'.(N) =M(g(N)) € B(N). ThenT. is a piecewise constant function with finitely many
kinks (when g(N) changes). The best-response itself remains the set-valued % (N).

Next, I evaluate incentives at the two extremes. At N = 0, compute 6*(0) from thes =1
game; if Ay (0,6%(0)) <0, then even the most crypto-oriented group G does not adopt, so
N*=0. AtN = 1, compute 68*(1); if Ag1 (1,6%(1)) > 0, then even the least crypto-oriented
group 1 adopts, so N* = 1. Recall that my > 0,Vg € {1,...,G}. Moreover, from Equation (11)
Ao ¢(N,0) is strictly increasing in g and strictly decreasing in 6. Based on these properties,
Proposition 11| describes the partial equilibrium for fixed sellers” acceptance decisions.

Proposition 11. (Equilibrium of the Adoption Game under Fixed Acceptance) Suppose
Proposition 1| holds so that 6*(N) is uniquely defined for each N. Then, under fixed acceptance:

1. Corner cases. If Ny (0,0%(0)) <O, then N* =0. If Ag;1(1,0%(1)) >0, then N* = 1.

2. Lower bound. If Ay (0,6%(0)) =0 and Ay—1(0,0*(M(G))) <0, then N* € [0,mg].
Moreover, if Ap.(0,6%(0)) > 0 and AgG-1(0,0*(M(G))) <O, then N* = mg.



3. Uniqueness. Away from the cases in (1.) and (2.), T.(N) is piecewise constant, right-
continuous and weakly decreasing on [0,1]. Therefore, T — N is strictly decreasing and the
fixed point N* solving N* = T.(N*) is unique.

Away from the boundary cases, I':(0) > 0 and I'.(1) < 1, so an interior sign change for
['.(N) —N is guaranteed and the unique fixed point is interior.

The key insight formalized by Proposition [11]is that with fixed seller acceptance de-
cisions, only the composition channel links N to 6*(N), yielding a (generically) strictly
decreasing I'.(N) and a unique adoption equilibrium N*. I next endogenize seller accep-
tance and show how the additional feedback reshapes these relationships.

Joint Equilibrium: Endogenous Acceptance, Adoption, and Runs. In this subsection I
solve for a Perfect Bayesian Equilibrium (PBE) with endogenous seller acceptance. Seller
acceptance at + = 0 depends only on their beliefs about the aggregate adoption rate N
(formed at the beginning of r = 0), whereas consumer adoption determines the realized
N and depends on (i) matching probabilities pp¢(N), ps(N) implied by the acceptance
profile f2(N), f5(N) (see Equations (I, 2) and (3)) and (i) the run threshold 6*(N) from
the r = 1 conversion game (see Proposition [I). Proposition [12)establishes existence.

Proposition 12. (Existence of a PBE) Under the conditions of Proposition |1}, 9% has nonempty,
compact, convex values and a closed graph, with only finitely many N at which the endpoints
change (when g switches). Hence, by Kakutani’s fixed-point theorem, there exists at least one
N* € [0,1] such that N* € B(N*). Sellers” acceptance profile at belief N*, consumers’ adoption
that implements N*, and 6*(N*) constitute a Perfect Bayesian Equilibrium.

Proof. I proceed in four steps: (Step 1) sellers” best responses, (Step 2) induced matching
probabilities and payment-preference statistic Ap(N), (Step 3) continuation equilibrium
run threshold 6*(N), and (Step 4) adoption fixed point N =T'(N).

Step 1: The seller acceptance shares f5(N) and f5(N) in Equations (1) and @) are
continuous and piecewise linear in N. The former is strictly increasing in N for all 8% <
uN < & and constant, otherwise. Conversely, the latter is strictly decreasing in N for all
8 <u(1-N) < 5" and constant, otherwise. Importantly, seller acceptance decisions only
depend on beliefs about the adoption rate N and not on beliefs about 6*.

Step 2: Given a belief N’ about the adoption rate the matching probabilities, f2(N') and
fS5(N"), for each group of consumers are given by Equation (3), which allows us to com-
pute the weighted average of group-specific matching probabilities Ap(N') = E[Apg(N') |
adopters at N'| as in Proposition On interior regions:

dApy(N')
dN’

dfs dre

= (1—(A)g)——wng,

N <0.

Hence, for a fixed composition of stablecoin adopters, the belief about a higher N’ gives rise
to a network effect in that it reduces Ap(N’), meaning that it increases the average relative
payment preference for stablecoins via sellers’” acceptance decisions. At the same time,
the aggregate Ap(N) also moves with the composition of adopters. This generates an
opposing effect. Specifically, from Corollary |5, for a fixed seller acceptance, 1 have that
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dAp/dN > 0 when adoption expands to more marginal, less crypto-oriented groups. In
other words, I have a decrease in the average relative payment preference for stablecoins via
consumer adoption decisions due to a composition effect and an increase due to a network
effect. The overall dAp/dN is the sum of these forces and can have either sign.

Step 3: Observe that 6* is continuous in N. Using the results from Propositions

de* 090*dAp = —-m dAp >0
dN ~ 9Ap dN ~ | 91/96 | dN s
— —~
>0 >0 if composition effect dominates

<0 if network effect dominates

Continuity of fZ, f5 and the IFT ensure that 6*(N) is continuous (piecewise C!) in N.

Step 4: By construction, %B(N) is either a singleton {M(g(N))} (if there is no indifferent
group) or a closed interval [M(g(N)), M(g(N)+1)] (the marginal group mixes). Because
Ap¢(N,6%(N)) is continuous in N and strictly increasing in g, the cutoff g(N) changes only
at finitely many points of N, and between such points the endpoints of %(N) are constant.
In either case the set is a nonempty, compact, convex subset of § = [0, 1].

Because A 4(N,0%(N)) is strictly increasing in g, the pair (g(N),g(N)) is well-defined.
As N varies, these indices can only change when some A, (N, 6*(N)) crosses 0. Between
such "changes points", the pair (g,g) is constant, so %(N) is a fixed singleton/interval. At
a "change" where, say, g increases from k—1 to k (equivalently, g increases from k to k+-1),
the adjacent values of % share the common endpoint M (k):

B(left) = [M(k),M (k)] and %B(right) = [M(k+1),M(k)],

or vice versa. Thus the correspondence “moves” by sliding intervals that overlap at their
boundary points. Now fix any sequence N, — N and x,, € #(N,) with x, — x. If Nisnot a
point where a "change" happens, then for all large n, (g(N,),g(N,)) is constant and equals
(g(N),g(N)); hence x, € B(N) eventually and the limit x also lies in (N). If N is a "change
point", then along any subsequence the pair (g(N,),g(N,)) is eventually constant on either
side and the corresponding sets %(N,,) share a common endpoint with (N). Therefore
any limit x of x, € B(N,) must lie in B(N). Hence the graph of % is closed.

Taken together, % is upper hemicontinuous and I invoke Kakutani’s fixed-point the-
orem: there exists N* € [0,1] with N* € B(N*). The acceptance profile at belief N*, con-
sumers’ adoption that implements N* (with marginal mixing if needed), and 6*(N*) satisfy
the PBE requirements on and off the equilibrium path. This concludes the proof. O

Whether the joint equilibrium is unique or not depends on two effects. First, a
composition effect (broader adoption brings in more deposit-oriented consumers, raising
fragility) and, second, an acceptance externality (higher expected stablecoin adoption in-
duces more sellers to also accept stablecoins, lowering fragility). Intuitively, the adoption
best-response is monotone in a way that yields a unique fixed point if the composition
effect dominates (formally, dAp(N;f)/dN > 0 for all selections). When the acceptance
externality dominates locally (formally, dAp(N; f)/dN < 0 along some selection on an
interval), the best-response can become S-shaped, generating multiple fixed points.
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